精英家教网 > 高中数学 > 题目详情
18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则2$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影为3.

分析 运用向量的数量积的定义和性质,即向量的平方即为模的平方,再由向量的投影的概念即可求得所求值.

解答 解:∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
∴(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos60°+4=2×1×2×$\frac{1}{2}$+4=6,
∴2$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影为$\frac{(2\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{b}}{|\overrightarrow{b}|}$=3,
故答案为:3

点评 本题考查数量积表示两个向量的夹角,考查投影的概念,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程是$y=\sqrt{3}x$,它与椭圆$\frac{x^2}{100}+\frac{y^2}{64}=1$有相同的焦点,则双曲线的方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{27}=1$B.$\frac{x^2}{36}-\frac{y^2}{108}=1$C.$\frac{x^2}{108}-\frac{y^2}{36}=1$D.$\frac{x^2}{27}-\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)满足f(2x-1)=x+1,则f(3)等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200m,BC=AD=160m,AF=40m,AE=60m,问如何设计才能使公园占地面积最大,求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过A(0,-1),焦点为F1,F2,椭圆E上满足MF1⊥MF2的点M有且仅有两个.
(1)求椭圆E的方程及离心率e;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆锥的侧面展开图是半径为2,中心角为$\frac{5π}{3}$的扇形,则由它的两条母线所确定的截面面积的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.集合A={x|-1<x<7},B={x|2<x<10},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.数列{an}满足an=f(3n)(n∈N+),且a1=3,则数列的通项公式为an=n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若?x>0,ex-1+1≥a+lnx,则a的最大值为2.

查看答案和解析>>

同步练习册答案