精英家教网 > 高中数学 > 题目详情
14.已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0,对于满足f(k-1)>0的任意k值,则使得函数g(x)=|x-2|-kx+1有两个不相同的零点的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

分析 分别求出偶函数f(x)在[0,+∞)上单调递减,f(2)=0,对于满足f(k-1)>0的k值的范围,则使得函数g(x)=|x-2|-kx+1有两个不相同的零点的k 的范围,即可求出概率.

解答 解:∵偶函数f(x)在[0,+∞)上单调递减,f(2)=0,
∴f(k-1)>0时,|k-1|<2,
∴-1<k<3,长度为4;
使得函数g(x)=|x-2|-kx+1有两个不同的零点,如图所示,可得$\frac{0+1}{2-0}$<k<1,即$\frac{1}{2}<k<1$,长度为$\frac{1}{2}$,
∴使得函数g(x)=|x-2|-kx+1有两个不相同的零点的概率为$\frac{1}{8}$,
故选A.

点评 本题考查函数的性质,考查函数的零点,考查几何概型,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知x,y满足约束条件$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,若目标函数z=3x+my在点(3,0)处取得最大值,则实数m的取值范围(  )
A.[-15,$\frac{1}{5}$]B.[-$\frac{5}{3}$,$\frac{9}{5}$]C.[-$\frac{5}{3}$,$\frac{1}{5}$]D.[-15,$\frac{9}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4ax+3,(x<1)}\\{(2-3a)x+1,(x≥1)}\end{array}\right.$在R内单调递减,则a的取值范围是(  )
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{2}{3}$)C.($\frac{2}{3}$,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一块边长为10cm的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.
(1)试把容器的容积V表示为x的函数
(2)若x=6,求图2的主视图的面积

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)满足f(2x-1)=x+1,则f(3)等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin2x-$\frac{\sqrt{3}}{2}$(x∈[0,π]),g(x)=x+3,点P(x1,y1),Q(x2,y2)分别位于f(x),g(x)的图象上,则(x1-x22+(y1-y22的最小值为(  )
A.$\frac{(π+18)^{2}}{72}$B.$\frac{\sqrt{2}π}{12}$C.$\frac{(π+18)^{2}}{12}$D.$\frac{(π-3\sqrt{3}+15)^{2}}{72}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200m,BC=AD=160m,AF=40m,AE=60m,问如何设计才能使公园占地面积最大,求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆锥的侧面展开图是半径为2,中心角为$\frac{5π}{3}$的扇形,则由它的两条母线所确定的截面面积的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组函数中,表示同一函数的是(  )
A.y=1,y=x0B.y=$\sqrt{x-1}$•$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$
C.y=x,y=$\root{3}{{x}^{3}}$D.y=|x|,t=($\sqrt{x}$)2

查看答案和解析>>

同步练习册答案