精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)若直线的极坐标方程为,设的交点为AB,求的面积.

【答案】(1);(2).

【解析】

(1)由x=ρcosθy=ρsinθ,以及ρ2=x2+y2,可得C1C2的极坐标方程;

(2)将代入C2的极坐标方程,可得|AB|,可得直角△C2AB的面积.

(1)因为x=ρcosθy=ρsinθ,所以C1的极坐标方程为ρcosθ=3

C2:(x22+y12=1即为x2+y24x2y+4=0

可得C2的极坐标方程为

(2)将代入ρ2-4ρcosθ-2ρsinθ+4=0,得

解得.故,即

由于C2的半径为1,所以直角△C2AB的面积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,若该数列前项和满足:①2的整数次幂,则满足条件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于两点.

1)求椭圆的方程;

2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,设是椭圆的两个短轴端点,是椭圆的长轴左端点.

1)当时,设点,直线交椭圆,且直线的斜率分别为,求的值;

2)当时,若经过的直线与椭圆交于两点,为坐标原点,求的面积之差的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:

古文迷

非古文迷

合计

男生

26

24

50

女生

30

20

50

合计

56

44

100

(Ⅰ)根据表中数据能否判断有的把握认为“古文迷”与性别有关?

(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;

(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为,求随机变量的分布列与数学期望.

参考公式: ,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019213日《西安市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

1)求这200名学生每周阅读时间的样本平均数;

2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为的学生中抽取9名参加座谈会.

i)你认为9个名额应该怎么分配?并说明理由;

ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?(精确到0.1

阅读时间不足8.5小时

阅读时间超过8.5小时

理工类专业

40

60

非理工类专业

附:).

临界值表:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为.以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)若曲线上的点到直线l的最大距离为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为t为参数),圆C的极坐标方程为

1)求直线l和圆C的直角坐标方程;

2)若点在圆C上,求的取值范围.

查看答案和解析>>

同步练习册答案