精英家教网 > 高中数学 > 题目详情
1.已知sinα+3cosα=0,则2sin2α-cos2α=-$\frac{13}{10}$.

分析 利用同角三角函数的基本关系求得tanα的值,再利用二倍角的正弦公式、以及同角三角函数的基本关系求得求得要求式子的值.

解答 解:∵sinα+3cosα=0,∴tanα=$\frac{sinα}{cosα}$=-3,则2sin2α-cos2α=$\frac{4sinαcosα{-cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{4tanα-1}{{tan}^{2}α+1}$=$\frac{-12-1}{9+1}$=-$\frac{13}{10}$,
故答案为:-$\frac{13}{10}$.

点评 本题主要考查同角三角函数的基本关系,二倍角的正弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线f(x)=x3-3x及曲线y=f(x)上一点P(1,-2).
(I) 求曲线y=f(x)在P点处的切线方程;
(Ⅱ)求曲线y=f(x)过P点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f($\frac{1}{x}}$)=$\frac{x}{1+x}$,则f′(1)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.5人站成一排,甲、乙两人相邻的不同站法有(  )
A.120种B.72种C.48种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$a={{(\frac{3}{4})}^{x}}$,b=x2,$c={{log}_{\frac{3}{4}}}x$,则当 x>1时,a,b,c的大小关系是(  )?
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x、y的取值如表所示:
x0134
y0.91.93.24.4
从散点图分析,y与x线性相关,且$\widehat{y}$=0.8x+a,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个三角形的两边长是方程2x2-$\sqrt{k}$x+2=0的两根,第三边长为2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=3mx-$\frac{1}{x}$-(3+m)lnx,若对任意的m∈(4,5),x1,x2∈[1,3],恒有(a-ln3)m-3ln3>|f(x1)-f(x2)|成立,则实数a的取值范围是[$\frac{37}{6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=ln({1+2x})+\frac{m}{1+2x}({m∈R})$.
(Ⅰ)若函数f(x)的图象在x轴上方,求m的取值范围;
(Ⅱ)若对任意的正整数n都有${(1+\frac{2}{n})^{n-a}}≥{e^2}$成立,求a的最大值.

查看答案和解析>>

同步练习册答案