精英家教网 > 高中数学 > 题目详情
19.已知多面体ABC-A1B1C1中,底面△ABC为等边三角形,边长为2,AA1⊥平面ABC,四边形A1ACC1为直角梯形,CC1与平面ABC所成的角为$\frac{π}{4}$,AA1=1
(1)若P为AB的中点,求证:A1P∥平面BC1C;
(2)求二面角A1-BC1-C的余弦值.

分析 (Ⅰ)推导出平面A1ACC1⊥平面ABC,过C1作C1D⊥AC于D,则C1D⊥平面ABC,∠C1CD是CC1与平面ABC所成角,取BC中点F,推导出四边形A1C1PF为平行四边形,从而A1P∥C1F,由此能证明A1P∥平面BC1C.
(Ⅱ)连结BD,以D为原点,分别以DB,DC,DC1为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角A1-BC1-C的余弦值.

解答 证明:(Ⅰ)∵AA1⊥平面ABC,AA1?平面A1ACC1
∴平面A1ACC1⊥平面ABC,
过C1作C1D⊥AC于D,∵平面A1ACC1∩平面ABC=AC,∴C1D⊥平面ABC,
∴CD是CC1在平面ABC内的射影,
∴∠C1CD是CC1与平面ABC所成角,∴$∠{C}_{1}CD=\frac{π}{4}$,
∴CD=C1D=AD=A1C1=1,
取BC中点F,连结PF,由题意得PF∥AC,且PF=$\frac{1}{2}$AC,
又A1C1∥AC,A1C1=$\frac{1}{2}AC$,∴A1C1∥PF,且A1C1=PF,
∴四边形A1C1PF为平行四边形,∴A1P∥C1F,
∵C1F?平面BC1C,A1P?平面BC1C,
∴A1P∥平面BC1C.
解:(Ⅱ)连结BD,以D为原点,分别以DB,DC,DC1为x,y,z轴,建立空间直角坐标系,
则A1(0,-1,1),B($\sqrt{3},0,0$),C1(0,0,1),C(0,1,0),
∴$\overrightarrow{{A}_{1}{C}_{1}}$=(0,1,0),$\overrightarrow{{A}_{1}B}$=($\sqrt{3},1,-1$),
设平面A1BC1的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=\sqrt{3}x+y-z=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}{C}_{1}}=y=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,0,$\sqrt{3}$),
$\overrightarrow{BC}$=(-$\sqrt{3},1,0$),$\overrightarrow{B{C}_{1}}$=(-$\sqrt{3},0,1$),
设平面BC1C的一个法向量$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=-\sqrt{3}a+c=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-\sqrt{3}a+b=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,$\sqrt{3},\sqrt{3}$),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1+3}{2\sqrt{7}}$=$\frac{2\sqrt{7}}{7}$,
根据图形得二面角A1-BC1-C的产面角为钝角,
∴二面角A1-BC1-C的余弦值为-$\frac{2\sqrt{7}}{7}$.

点评 本题考查线面平行的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设m,n是两条不同直线,α、β是两个不同平面,有下列命题:
①若α⊥β,m⊥α,则m不可能与β相交
②若m⊥n,m⊥α,则n不可能与α相交
③若m∥α,n∥α,则m与n一定平行
④若m⊥β,n⊥α,则α与β一定垂直
其中真命题的序号为(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.求边长为3,4,5的直角三角形的内切圆半径的算法为:
第一步 输入a=3,b=4,c=5(或a=4,b=3,c=5);
第二步 计算r=$\frac{a+b-c}{2}$;
第三步 输出r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AB=AC=1,点P是棱BB1上一点,满足$\overrightarrow{BP}=λ\overrightarrow{B{B_1}}$(0≤λ≤1).
(1)若λ=$\frac{1}{3}$,求直线PC与平面A1BC所成角的正弦值;
(2)若二面角P-A1C-B的正弦值为$\frac{2}{3}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示的几何体中,2CC1=3AA1=6,CC1⊥平面ABCD,且AA1⊥平面ABCD,正方形ABCD的边长为2,E为棱A1D中点,平面ABE分别与棱C1D,C1C交于点F,G.
(Ⅰ)求证:AE∥平面BCC1
(Ⅱ)求证:A1D⊥平面ABE;
(Ⅲ)求二面角D-EF-B的大小,并求CG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知长方体AC1中,棱AB=BC=1,棱BB1=2,点E为棱BB1上的点.
(Ⅰ)求证:AC⊥BD1
(Ⅱ)求证:平面D1DB⊥平面ACE;
(Ⅲ)BE=$\frac{1}{4}$BB1,求平面ACE与平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将数字1,2,3,4,5,6书写在每一个骰子的六个表面上,做成6枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A和B所示的两个柱体,则柱体A和B的表面(不含地面)数字之和分别是(  )
A.47,48B.47,49C.49,50D.50,49

查看答案和解析>>

同步练习册答案