精英家教网 > 高中数学 > 题目详情

【题目】袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程次后,袋中白球的个数记为

1)求随机变量的概率分布及数学期望

2)求随机变量的数学期望关于的表达式.

【答案】1)概率分布详见解析,;(2

【解析】

1的可能取值为345,计算概率得到分布列,计算数学期望得到答案.

2)设,则,计算概率得到数学期望,整理化简得到,根据数列知识得到答案.

1)由题意可知345

时,即二次摸球均摸到白球,其概率是

时,即二次摸球恰好摸到一白,一黑球,

其概率是

时,即二次摸球均摸到黑球,其概率是

所以随机变量的概率分布如下表:

数学期望.

2)设012345

由此可知,

,故是首项为,公比为的等比数列,

,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题实数满足(其中),命题方程表示双曲线.

I)若,且为真命题,求实数的取值范围;

(Ⅱ)的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:

①3小时以内(3小时)为健康时间,玩家在这段时间内获得的累积经验值单位:与游玩时间小时)满足关系式:

②35小时(5小时)为疲劳时间,玩家在这段时间内获得的经验值为即累积经验值不变);

超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.

时,写出累积经验值E与游玩时间t的函数关系式,并求出游玩6小时的累积经验值;

该游戏厂商把累积经验值E与游玩时间t的比值称为“玩家愉悦指数”,记作;若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】物联网兴起、发展、完善极大的方便了市民生活需求.某市统计局随机地调查了该市某社区的100名市民网上购菜状况,其数据如下:

每周网上买菜次数

1

2

3

4

5

6次及以上

总计

10

8

7

3

2

15

45

5

4

6

4

6

30

55

总计

15

12

13

7

8

45

100

1)把每周网上买菜次数超过3次的用户称为“网上买菜热爱者”,能否在犯错误概率不超过0.005的前提下,认为是否为“网上买菜热爱者”与性别有关?

2)把每周使用移动支付6次及6次以上的用户称为“网上买菜达人”,视频率为概率,在我市所有“网上买菜达人”中,随机抽取4名用户求既有男“网上买菜达人”又有女“网上买菜达人”的概率.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,点是棱上的一个动点,平面交棱于点给出下列命题:

①存在点,使得//平面

对于任意的点平面平面

存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

其中正确命题的序号是______.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的三边长分别为a、b、c,且满足.

(1)是否存在边长均为整数的ABC?若存在,求出三边长若不存在,说明理由.

(2),求出ABC周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边边上.,矩形的面积为.

1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;

2)试问如何截取(即取何值时),可使得到的矩形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解本市的交通状况,某校高一年级的同学分成了甲、乙、丙三个组,从下午13点到18点,分别对三个路口的机动车通行情况进行了实际调查,并绘制了频率分布直方图(如图),记甲、乙、丙三个组所调查数据的标准差分别为,则它们的大小关系为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案