精英家教网 > 高中数学 > 题目详情
5.设四边形EFGH的四条边长为a,b,c,d,其四个顶点分别在单位正方形ABCD的四条边上,则2a2+b2+2c2+d2的最小值为(  )
A.3B.6C.$3\sqrt{2}$D.$\frac{8}{3}$

分析 不妨设EF=a,FG=b,GH=c,HE=d,且设DG=x,GC=1-x,CF=y,FB=1-y,BE=z,AE=1-z,AH=t,DH=1-t.由勾股定理和二次函数的最值求法:配方,即可得到最小值.

解答 解:不妨设EF=a,FG=b,GH=c,HE=d,
且设DG=x,GC=1-x,CF=y,FB=1-y,
BE=z,AE=1-z,AH=t,DH=1-t.
则2a2+b2+2c2+d2=2[z2+(1-y)2]+[y2+(1-x)2]+2[x2+(1-t)2]+[t2+(1-z)2]
=[2z2+(1-z)2]+[y2+2(1-y)2]+[2x2+(1-x)2]+[t2+2(1-t)2]
=3(z-$\frac{1}{3}$)2+$\frac{2}{3}$+3(y-$\frac{2}{3}$)2+$\frac{2}{3}$+3(x-$\frac{1}{3}$)2+$\frac{2}{3}$+3(t-$\frac{2}{3}$)2+$\frac{2}{3}$,
当x=z=$\frac{1}{3}$,y=t=$\frac{2}{3}$时,取得最小值,且为$\frac{8}{3}$.
故选D.

点评 本题考查直角三角形的勾股定理和二次函数的最值的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:选择题

在数列中,,则的值为( )

A.49 B.50 C.51 D.52

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:选择题

设各项都是正数的等差数列的公差为,前项和为,若成等比数列,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的前n项和为Sn,已知a7=4,a19=2a3.数列{bn}的前n项和为Tn.满足${4}^{2{a}_{n}-1}$=λTn-(a3-1)(n∈N*).
(1)问是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由;
(2)已知对于n∈N*,不等式$\frac{1}{{S}_{1}}$$+\frac{1}{{S}_{2}}+\frac{1}{{S}_{3}}+…+\frac{1}{{S}_{n}}$<M恒成立,求实数M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,点M为AB1的中点,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P、Q可以重合),则MP+PQ的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}满足:an>0,a1=5,Sn为其前{an}项和,且20S1,S3,7S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log5a1+log5a2+…+log5an,求数列{$\frac{1}{b_n}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.点P是在平面直角坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y的两条切线,切点分别为A,B.
(Ⅰ)设点A(x1,y1),求证:切线PA的方程为y=2x1x-x12
(Ⅱ)若直线AB交y轴于R,OP⊥AB于Q点,求证:R是定点并求$\frac{|PQ|}{|QR|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于x的分式方程$\frac{x}{x-1}$-2=$\frac{m}{x-1}$无解,则m的值是1.

查看答案和解析>>

同步练习册答案