精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+bx2+cx+d,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,满足f′(2-x)=f′(x).
(1)求f(x)的单调区间.
(2)设g(x)=x
f′(x)
,m>0,求函数g(x)在[0,m]上的最大值.
分析:(1)由f′(2-x)=f′(x)可得其对称轴x=1,据此可得b值,求出直线y=4x-12与x轴交点(3,0),则f(3)=0,且f′(3)=4,从而可解得c、d值,根据f′(x)的符号即可求得函数的单调区间;
(2)把g(x)表示为分段函数并作出其图象,令x2-x=
1
4
,得x=
1+
2
2
,根据图象对m进行分类讨论,由此可求得其最大值;
解答:解:(1)f′(x)=x2+2bx+c,
∵f′(2-x)=f′(x),∴函数y=f′(x)的图象关于直线x=1对称,则b=-1.
∵直线y=4x-12与x轴的交点为(3,0),
∴f(3)=0,且f′(3)=4,即9+9b+3c+d=0①,且9+6b+c=4②,由①②解得c=1,d=-3.
则f(x)=
1
3
x3-x2
+x-3.
故f′(x)=x2-2x+1=(x-1)2,所以f(x)在R上单调递增;
(2)g(x)=x
(x-1)2
=x|x-1|=
x2-x,x≥1
x-x2,x<1

其图象如图所示.当x2-x=
1
4
时,x=
1+
2
2
,根据图象得:
(ⅰ)当0<m
1
2
时,g(x)最大值为g(m)=m-m2
(ⅱ)当
1
2
<m≤
1+
2
2
时,g(x)的最大值为
1
4

(ⅲ)当m>
1+
2
2
时,g(x)最大值为m2-m.
点评:本题考查函数的单调性的判断及函数最值的求解,导数是研究函数有关性质的强有力工具,考查分类讨论思想、数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案