【题目】已知函数f(x)= x3﹣ ax2 , a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.
【答案】
(1)
解:当a=2时,f(x)= x3﹣x2,
∴f′(x)=x2﹣2x,
∴k=f′(3)=9﹣6=3,f(3)= ×27﹣9=0,
∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0
(2)
函数g(x)=f(x)+(x﹣a)cosx﹣sinx= x3﹣ ax2+(x﹣a)cosx﹣sinx,
∴g′(x)=x2﹣ax+cosx﹣(x﹣a)sinx﹣cosx=x2﹣ax+(x﹣a)sinx=(x﹣a)(x+sinx),
令g′(x)=0,解得x=a,或x=0,
当x<0时,x+sinx<0,当x≥0,x+sinx≥0,
①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,
当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,
当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,
∴当x=a时,函数有极小值,极小值为g(a)=﹣ a3﹣sina
当x=0时,有极大值,极大值为g(0)=﹣a,
②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,
当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,
当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,
∴当x=a时,函数有极大值,极大值为g(a)=﹣ a3﹣sina
当x=0时,有极小值,极小值为g(0)=﹣a
③当a=0时,g′(x)=x(x+sinx),
当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,
当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,
∴g(x)在R上单调递增,无极值.
【解析】(1)根据导数的几何意义即可求出曲线y=f(x)在点(3,f(3))处的切线方程,(2)先求导,再分类讨论即可求出函数的单调区间和极值
【考点精析】通过灵活运用基本求导法则和利用导数研究函数的单调性,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(1)求证:AC平分∠BAD;
(2)求BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆O为△ABC的外接圆,过点C作圆O的切线交AB的延长线于点D,∠ADC的平分线交AC于点E,∠ACB的平分线交AD于点H.
(1)求证:CH⊥DE;
(2)若AE=2CE.证明:DC=2DB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 .
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n﹣1}的前n项和(n∈N+).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 , 为非零向量,则“存在负数λ,使得 =λ ”是 <0”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,异面直线A1B与B1C1所成的角为60°.
(1)求该三棱柱的体积;
(2)设D是BB1的中点,求DC1与平面A1BC1所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com