精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= x3 ax2 , a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.

【答案】
(1)

解:当a=2时,f(x)= x3﹣x2

∴f′(x)=x2﹣2x,

∴k=f′(3)=9﹣6=3,f(3)= ×27﹣9=0,

∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0


(2)

函数g(x)=f(x)+(x﹣a)cosx﹣sinx= x3 ax2+(x﹣a)cosx﹣sinx,

∴g′(x)=x2﹣ax+cosx﹣(x﹣a)sinx﹣cosx=x2﹣ax+(x﹣a)sinx=(x﹣a)(x+sinx),

令g′(x)=0,解得x=a,或x=0,

当x<0时,x+sinx<0,当x≥0,x+sinx≥0,

①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,

当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,

当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,

∴当x=a时,函数有极小值,极小值为g(a)=﹣ a3﹣sina

当x=0时,有极大值,极大值为g(0)=﹣a,

②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,

当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,

当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,

∴当x=a时,函数有极大值,极大值为g(a)=﹣ a3﹣sina

当x=0时,有极小值,极小值为g(0)=﹣a

③当a=0时,g′(x)=x(x+sinx),

当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,

当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,

∴g(x)在R上单调递增,无极值.


【解析】(1)根据导数的几何意义即可求出曲线y=f(x)在点(3,f(3))处的切线方程,(2)先求导,再分类讨论即可求出函数的单调区间和极值
【考点精析】通过灵活运用基本求导法则和利用导数研究函数的单调性,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.

(1)求证:AC平分∠BAD;
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O为△ABC的外接圆,过点C作圆O的切线交AB的延长线于点D,∠ADC的平分线交AC于点E,∠ACB的平分线交AD于点H.

(1)求证:CH⊥DE;
(2)若AE=2CE.证明:DC=2DB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n1}的前n项和(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(  )

A.x>3
B.x>4
C.x≤4
D.x≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为非零向量,则“存在负数λ,使得 ”是 <0”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体OABC-O1A1B1C1中,E,F分别是AB,BC上的动点,且AE=BF,求证:A1F⊥C1E.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,异面直线A1B与B1C1所成的角为60°.

(1)求该三棱柱的体积;

(2)设D是BB1的中点,求DC1与平面A1BC1所成角的正弦值.

查看答案和解析>>

同步练习册答案