精英家教网 > 高中数学 > 题目详情
17.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=$\frac{1}{2}A{A_1}$=2,点D是棱AA1的中点.
(1)证明:平面BDC1⊥平面BDC1
(2)求三棱锥C1-BDC的体积.

分析 (1)由题设证明BC⊥平面ACC1A1,可得DC1⊥BC,再由已知可得∠ADC=∠A1DC1=45°,得∠CDC1=90°,即C1D⊥DC,结合线面垂直的判定得DC1⊥平面BDC,从而得到平面BDC1⊥平面BDC;
(2)求解直角三角形可得$CD=\sqrt{A{C^2}+A{D^2}}=\sqrt{{2^2}+{2^2}}=2\sqrt{2}$,得到Rt△CDC1的面积$S=\frac{1}{2}×2\sqrt{2}×2\sqrt{2}=4$,再由等积法可得三棱锥C1-BDC的体积.

解答 (1)证明:由题设知BC⊥CC1,BC⊥AC,又AC∩CC1=C,∴BC⊥平面ACC1A1
又∵DC1?平面ACC1A1,∴DC1⊥BC,
∵∠ADC=∠A1DC1=45°,∴∠CDC1=90°,即C1D⊥DC,
∵DC∩BC=C,∴DC1⊥平面BDC,又∵DC1?平面BDC1
平面BDC1⊥平面BDC;
(2)解:由$AC=BC=\frac{1}{2}A{A_1}=2$,得AA1=4,∴AD=2,
∴$CD=\sqrt{A{C^2}+A{D^2}}=\sqrt{{2^2}+{2^2}}=2\sqrt{2}$,
则Rt△CDC1的面积$S=\frac{1}{2}×2\sqrt{2}×2\sqrt{2}=4$,
∴${V_{{C_1}-BD{C_1}}}={V_{B-CD{C_1}}}=\frac{1}{3}S•BC=\frac{1}{3}×4×2=\frac{8}{3}$.

点评 本题考查平面与平面垂直的判定,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{1}{3}{x^3}-m{x^2}+m-1$的单调减区间是(0,4),则实数m=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点为F1、F2,正△AF1F2的中心恰为椭圆的上顶点B,且$\overrightarrow{B{F_1}}•\overrightarrow{B{F_2}}=-2$,点M为椭圆上任一点,点N与M关于x轴对称.
(1)求椭圆的方程;
(2)点P为椭圆上的一动点,直线PM,PN都不与坐标轴平行,且分别与x轴交于C,D两点,从原点O作经过点C,D两点的圆E的切线,切点为H,判断|OH|是否为定值,若为定值,求出定值,若不为定值,求出|OH|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(1,$\sqrt{3}$)在圆C:x2+y2=4上,则过点A的圆C的切线方程x+$\sqrt{3}$y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线x•(2t-1)-y(2t+1)+1=0(t∈R)的倾斜角为α,则α的范围是(  )
A.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤πB.$\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$C.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<πD.0≤α<$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,则目标函数z=2x+y的最小值为(  )
A.-3B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=lo{g}_{a}x+lo{g}_{\frac{1}{a}}$8(a>0,且a≠1),在集合{$\frac{1}{4}$,$\frac{1}{3}$,$\frac{1}{2}$,3,4,5,6,7}中任取一个数为a,则f(3a+1)>f(2a)>0的概率为(  )
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线E:y2=2px(p>0)的焦点为F,点A(0,2),若线段AF的中点B在抛物线上,则|BF|=(  )
A.$\frac{5}{4}$B.$\frac{5}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$上一点P到左焦点的距离为5,则点P到右焦点的距离为(  )
A.13B.15C.12D.11

查看答案和解析>>

同步练习册答案