| A. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤π | B. | $\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$ | C. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<π | D. | 0≤α<$\frac{π}{4}$ |
分析 根据倾斜角、斜率的定义得到tanα=$\frac{{2}^{t}-1}{{2}^{t}+1}$,结合函数的性质进行解答.
解答 解:∵直线x•(2t-1)-y(2t+1)+1=0(t∈R)的倾斜角为α,
∴tanα=$\frac{{2}^{t}-1}{{2}^{t}+1}$=1-$\frac{2}{{2}^{t}+1}$,
∵y=2t+1>1,
∴0<$\frac{2}{{2}^{t}+1}$<2,
∴-1<1-$\frac{2}{{2}^{t}+1}$<1,
∴0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<π.
故选:C.
点评 本题考查了直线斜率的求法,考查了斜率和倾斜角的关系,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com