分析 (1)根据直角三角形性质,得:BD⊥DC,AD⊥DC,由此能示出四面体ABCD的体积.
(2)取AC中点F,连DF,EF,则∠DEF为AB与DE所成角或补角.由此能示出异面直线DE和AB所成角的余弦值.
解答 解:(1)根据直角三角形性质,得:BD⊥DC,AD⊥DC,![]()
∴l1=AD=1,${S_{BDC}}=2×2×\frac{1}{2}=2$,
∴四面体ABCD的体积$V=\frac{1}{3}×\frac{1}{2}×2×2×1=\frac{2}{3}$.
(2)取AC中点F,连DF,EF,则∠DEF为AB与DE所成角或补角.
$PE=\frac{1}{2}AB=\frac{{\sqrt{5}}}{2},DE=\frac{2S}{PC}=\frac{4}{{2\sqrt{2}}}=\sqrt{2},DP=\frac{1}{2}AC=\frac{{\sqrt{5}}}{2}$,
∴$cosθ=\frac{{\frac{5}{4}+2-\frac{5}{4}}}{{\sqrt{10}}}=\frac{2}{{\sqrt{10}}}=\frac{{\sqrt{10}}}{5}$.
所以异面直线DE和AB所成角的余弦值$\frac{{\sqrt{10}}}{5}$.
点评 本题考查四棱锥的体积的求法,考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-1) | B. | (-1,3) | C. | (3,4) | D. | (-1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤π | B. | $\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$ | C. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<π | D. | 0≤α<$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 数据编号 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 道路里程数x | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| 汽车保有量y | 144 | 154 | 160 | 168 | 176 | 180 | 186 | 190 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com