精英家教网 > 高中数学 > 题目详情
14.已知P为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一个点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为7.

分析 由椭圆的定义:|PF1|+|PF2|=2a=10.圆(x+3)2+y2=1和圆(x-3)2+y2=4上的圆心和半径分别为F1(-3,0),r1=1;F2(3,0),r2=2.由|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.|PM|+|PN|≥|PF1|+|PF2|-1-2=7.

解答 解:由椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1焦点在x轴上,a=5,b=4,c=3,
∴焦点分别为:F1(-3,0),F2(3,0).
|PF1|+|PF2|=2a=10.
圆(x+3)2+y2=1的圆心与半径分别为:F1(-3,0),r1=1;
圆(x-3)2+y2=4的圆心与半径分别为:F2(3,0),r2=2.
∵|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.
∴|PM|+|PN|≥|PF1|+|PF2|-1-2=7.
故答案为:7.

点评 本题考查椭圆的定义,考查椭圆及圆的标准方程的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(-1,n)$,(n>0)且$\overrightarrow a•\overrightarrow b=0$,点P(m,n)在圆x2+y2=5上,则|2$\overrightarrow a+\overrightarrow b|$等于$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范围;
(2)当x∈[1,+∞)时,求函数y=g(x)+f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知log183=a,log518=b,用a,b表示log3690=$\frac{1+b}{2b-2ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设$\overrightarrow a=(sinx-1\;,\;\;cosx-1)$,$\overrightarrow b=({\frac{{\sqrt{2}}}{2}\;,\;\;\frac{{\sqrt{2}}}{2}})$
(1)若$\overrightarrow a$为单位向量,求x的值;
(2)设$f(x)=\overrightarrow a•\overrightarrow b$,则函数y=f(x)的图象如何由y=sinx图象得到?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,AA1=1,底面△ABC是边长为2的正三角形,则三棱锥A-A1B1C1的体积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,则向量$\overrightarrow a,\overrightarrow b$夹角的余弦值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={1,2,3,4},B={x|3≤x<6},则A∩B=(  )
A.{3,4}B.{4}C.{ x|3≤x≤4}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.四面体ABCD及其三视图如图1,2所示.

(1)求四面体ABCD的体积;
(2)若点E为棱BC的中点,求异面直线DE和AB所成角的余弦值.

查看答案和解析>>

同步练习册答案