精英家教网 > 高中数学 > 题目详情
(本小题满分13分)

过椭圆内一点M(1,1)的弦AB
(1)若点M恰为弦AB的中点,求直线AB的方程;   
(2)求过点M的弦的中点的轨迹方程。    

解:(1)设直线AB的斜率为k,则AB的方程可设为
  得
………3分


………7分
另法(直接求k):设A(x1,y1),B(x2,y2)。






(2)设弦AB的中点为P(x, y)



……13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左右焦点分别为,点B为椭圆与
轴的正半轴的交点,点P在第一象限内且在椭圆上,且轴垂直, 
(1)求椭圆C的方程;
(2)设点B关于直线的对称点E(异于点B)在椭圆C上,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为
(I)求椭圆的方程;
(II)已知点线段上一个动点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平面直角坐标系中有两定点,若动点M满足,设动点M的轨迹为C。
(1)求曲线C的方程;
(2)设直线交曲线C于A、B两点,交直线于点D,若,证明:D为AB的中点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的离心率为,短轴一个端点到右焦点的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)在平面直角坐标系xoy中,设P(x,y)是椭圆上的一个动点,求S=x+y的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左焦点F。右顶点A,上顶点B,若,则椭圆的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知点F椭圆E:的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且是边长为2的正三角形;又椭圆E上的P、Q两点关于直线对称.
(1)求椭圆E的方程;(2)当直线过点()时,求直线PQ的方程;
(3)若点C是直线上一点,且=,求面积的最大值.

查看答案和解析>>

同步练习册答案