精英家教网 > 高中数学 > 题目详情
10.一个几何体的三视图如图所示,则这个几何体是(  )
A.B.C.D.

分析 分析给定四个答案中的几何体三视图的形状,可得结论.

解答 解:A中几何体的正视图中应该画矩形的另一条对角线,且是虚线,故A错误;
(B)中几何体的正视图中的对角线应该是虚线,故B错误;
C中几何体的正视图中的对角线应该是另一条,故C错误.
故选:D

点评 本题考查的知识点是简单几何体的三视图,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数f(x)是定义在R上的奇函数,但当x>0时,f(x)=$\frac{1}{x+1}$-log2(x+1),则满足4f(x+1)>7的实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-1)∪(3,+∞)C.(-4,2)D.(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=mx+1与曲线x=2+$\sqrt{1-{y}^{2}}$的图象始终有交点,则m的取值范围是(  )
A.(-1,0)B.[-1,0]C.(-1,-$\frac{1}{3}$)D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.规定[t]为不超过t的最大整数,例如[12.5]=12,[-3.5]=-4,对任意的实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].
(1)若x=$\frac{7}{16}$,分别求f1(x) 和f2(x);
(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知N是自然数集,在数轴上表示出集合A,如果所示,则A∩N=(  )
A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一个幂函数和一个指数函数图象的一个交点是(2,4),则它们图象的另一个交点为(4,16).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρcos2θ=2sinθ,它在点$M(2\sqrt{2},\frac{π}{4})$处的切线为直线l.
(1)求直线l的直角坐标方程;
(2)已知点P为椭圆$\frac{x^2}{3}+\frac{y^2}{4}$=1上一点,求点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若△ABC的三个内角满足tanAtanBtanC>0,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下面使用类比推理正确的是(  )
A.由实数运算“(ab)t=a(bt)”类比到“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)”
B.由实数运算“(ab)t=at+bt”类比到“($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$”
C.由实数运算“|ab|=|a||b|”类比到“|$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|”
D.由实数运算“$\frac{ac}{bc}$=$\frac{a}{b}$”类比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow{b}•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow{b}}$”

查看答案和解析>>

同步练习册答案