精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρcos2θ=2sinθ,它在点$M(2\sqrt{2},\frac{π}{4})$处的切线为直线l.
(1)求直线l的直角坐标方程;
(2)已知点P为椭圆$\frac{x^2}{3}+\frac{y^2}{4}$=1上一点,求点P到直线l的距离的取值范围.

分析 (1)利用极坐标方程与普通方程的互化求解即可.
(2)设出椭圆的参数方程,利用点到直线的距离公式化简求解即可.

解答 (本小题满分10分)
解:(1)∵曲线C的极坐标方程为ρcos2θ=2sinθ,
∴ρ2cos2θ=2ρsinθ,
∴曲线C的直角坐标方程为y=$\frac{1}{2}$x2
∴y′=x,又M(2$\sqrt{2}$,$\frac{π}{4}$)的直角坐标为(2,2),
∴曲线C在点(2,2)处的切线方程为y-2=2(x-2),
即直线l的直角坐标方程为:2x-y-2=0. …(5分)
(2)P为椭圆$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$上一点,设P($\sqrt{3}$cosα,2sinα),
则P到直线l的距离d=$\frac{|2\sqrt{3}cosα-2sinα-2|}{\sqrt{5}}$=$\frac{|4sin(α-\frac{π}{3})+2|}{\sqrt{5}}$,
当sin(α-$\frac{π}{3}$)=-$\frac{1}{2}$时,d有最小值0.
当sin(α-$\frac{π}{3}$)=1时,d有最大值$\frac{6\sqrt{5}}{5}$.
∴P到直线l的距离的取值范围为:[0,$\frac{6\sqrt{5}}{5}$].…(10分)

点评 本题考查椭圆的参数方程,极坐标方程与普通方程的互化,点到直线的距离公式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为(  )
A.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$)B.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$]C.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1]D.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$A(\sqrt{3},2),F(\sqrt{3},0)$,P是椭圆$\frac{x^2}{4}+{y^2}=1$上的任一点,则|PA|-|PF|的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则这个几何体是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(1+x)+alog2(1-x)(a∈R)的图象关于y轴对称.
(1)求函数f(x)的定义域;
(2)求a的值;
(3)若函数g(x)=x-2f(x)-2t有两个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.i是虚数单位,若复数z满足zi=-1+i,则复数z的共轭复数是(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex-ax有两个不同的零点,
(Ⅰ) 求实数a的取值范围.
(Ⅱ)设f(x)的极值点为x=x0,证明:对任意的x>0,恒有不等式f(x0+x)>f(x0-x)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆x2+(y-1)2=4上点到曲线f(x)=-x3+3x2在点(1,f(1))处的切线的最远距离为(  )
A.$\frac{\sqrt{10}}{4}$B.$\frac{10+\sqrt{10}}{5}$C.$\frac{10-\sqrt{10}}{5}$D.$\frac{10+2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=sin ($\frac{π}{4}$-$\frac{x}{2}$)的图象,只需将y=cos $\frac{x}{2}$的图象(  )
A.向左平移$\frac{π}{2}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

同步练习册答案