分析 (Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间,从而求出a的范围即可;
(Ⅱ)设g(x)=f(lna+x)-f(lna-x)(x>0),求出函数g(x)的导数,得到g(x)的单调性,从而证出结论.
解答 (Ⅰ)解:∵f′(x)=ex-a,
若a≤0,必有f′(x)=ex-a>0,
即f(x)在R递增,不可能有2个零点,
∴a>0,
令f′(x)=ex-a>0,解得:x>lna,
令f′(x)<0,解得:x<lna,
∴f(x)在(-∞,lna)递减,在(lna,+∞)递增,
∴f(x)≥f(lna)=a-alna,
要使f(x)=ex-ax有2个零点,
必有a-alna<0,解得:a>e;
(Ⅱ)证明:由(Ⅰ)得:x0=lna,(a>e),
设g(x)=f(lna+x)-f(lna-x)(x>0)
=[elna+x-a(lna+x)]-[elna-x-a(lna-x)]
=a(ex-e-x-2x),
g′(x)=a(ex+e-x-2)≥2a$\sqrt{{e}^{x}{•e}^{-x}}$-2a=0,
当且仅当x=0时“=”成立,
但x>0,故g′(x)>0,
即g(x)在(0,+∞)递增,
当x>0时,恒有g(x)>g(0)=0,
即不等式f(x0+x)>f(x0-x)恒成立.
点评 本题考查了函数的单调性零点问题,考查导数的应用以及不等式的证明,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,1,2,3} | B. | {0,1,2,3} | C. | {1,2,3} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n | B. | 2n | C. | 3n | D. | 4n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com