精英家教网 > 高中数学 > 题目详情
9.已知数列{an}的前n项和${S_n}=\frac{3}{2}{n^2}+\frac{3}{2}n$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记${T_n}=\frac{{{a_n}•{a_{n+1}}}}{2^n}$,若对于一切的正整数n,总有Tn≤m成立,求实数m的取值范围.
(Ⅲ)设Bn为数列{bn}的前n项的和,其中${b_n}={2^{a_n}}$,若不等式$\frac{{{B_n}-t{b_n}}}{{{B_{n+1}}+t{b_{n+1}}}}<\frac{1}{16}$对任意的n∈N*恒成立,试求正实数t的取值范围.

分析 (Ⅰ)由an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,利用${S_n}=\frac{3}{2}{n^2}+\frac{3}{2}n$,能求出an=3n.
(Ⅱ)先求出${T_n}=\frac{{{a_n}•{a_{n+1}}}}{2^n}$=$\frac{n+2}{2n}$,再求出{Tn}中的最大值为${T_2}={T_3}=\frac{27}{2}$,由此能求出实数m的取值范围.
(Ⅲ)由${b_n}={2^{3n}}=8{\;}^n⇒{B_n}=\frac{{8(1-{8^n})}}{1-8}=\frac{8}{7}(8{\;}^n-1)$,由此能求出正实数t的取值范围.

解答 解:(Ⅰ)∵数列{an}的前n项和${S_n}=\frac{3}{2}{n^2}+\frac{3}{2}n$,
∴当n≥2时,${S_{n-1}}=\frac{3}{2}{(n-1)^2}+\frac{3}{2}(n-1)$,
∴an=Sn-Sn-1=3n,…(2分)
又n=1时,a1=S1=3满足上式,
∴an=3n.…(3分)
(Ⅱ)${T_n}=\frac{{{a_n}•{a_{n+1}}}}{2^n}=\frac{9n(n+1)}{2^n}$$⇒\frac{{{T_{n+1}}}}{T_n}=\frac{{\frac{9(n+1)(n+2)}{{{2^{n+1}}}}}}{{\frac{9n(n+1)}{2^n}}}=\frac{n+2}{2n}$,…(4分)
当n=1,2时,Tn+1≥Tn
当n≥3时,n+2<2n⇒Tn+1<Tn
∴n=1时,T1=9,n=2,3时,${T_2}={T_3}=\frac{27}{2}$,n≥4时,Tn<T3
∴{Tn}中的最大值为${T_2}={T_3}=\frac{27}{2}$.…(6分)
要使Tn≤m对于一切的正整数n恒成立,只需$\frac{27}{2}≤m$,
∴$m≥\frac{27}{2}$.…(7分)
(Ⅲ)${b_n}={2^{3n}}=8{\;}^n⇒{B_n}=\frac{{8(1-{8^n})}}{1-8}=\frac{8}{7}(8{\;}^n-1)$,…(8分)
将Bn代入$\frac{{{B_n}-t{b_n}}}{{{B_{n+1}}+t{b_{n+1}}}}<\frac{1}{16}$,化简得,$\frac{{\frac{8}{7}×({{8^n}-1})-t×{8^n}}}{{({\frac{8}{7}+t}){8^{n+1}}-\frac{8}{7}}}<\frac{1}{16}$(*)
∵t>0,∴$({\frac{8}{7}+t}){8^{n+1}}>\frac{8}{7}$,…9分
∴(*)化为$\frac{8}{7}[{16×({{8^n}-1})-{8^{n+1}}+1}]<3t×{8^{n+1}}$,
整理得$t>\frac{{8[{16×({{8^n}-1})-{8^{n+1}}+1}]}}{{21×{8^{n+1}}}}$,…(10分)
∴$t>\frac{8}{21}({1-\frac{15}{{{8^{n+1}}}}})$对一切的正整数n恒成立,…(11分)
∵$1-\frac{15}{{{8^{n+1}}}}$随n的增大而增大,且$\frac{8}{21}({1-\frac{15}{{{8^{n+1}}}}})<\frac{8}{21}$,
∴$t≥\frac{8}{21}$..…(12分)

点评 本题考查数列的通项公式的求法,考查实数的取值范围的求法,解题时要认真审题,注意放缩法的合理运用,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若复数z1、z2满足:Rez1-Rez2=0,Imz1+Imz2=0,则z1、z2在复平面上的对应点Z1、Z2(  )
A.关于实轴对称B.关于虚轴对称
C.关于原点对称D.关于直线y=-x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(y,1),$\overrightarrow{{e}_{1}}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{{e}_{2}}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,且$\overrightarrow{{e}_{1}}$=2$\overrightarrow{{e}_{2}}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的一个内角∠B=60°,且a+c=5,ac=6.求:
(1)边b的长;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,a5=-3,S6=2a4-5
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{2-{a_n}}}-n$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足${a_n}={x^n}-2n$,则数列{an}的前n项和Sn=$\left\{\begin{array}{l}{-{n}^{2}-n,x=0}\\{-{n}^{2},x=1}\\{\frac{{x}^{n+1}-x}{x-1}-{n}^{2}-n,x≠0,1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={2015,2016},非空集合B满足A∪B={2015,2016},则满足条件的集合B的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果sinα=$\frac{12}{13}$,α∈(0,$\frac{π}{2}$),那么cos(π-α)=(  )
A.$\frac{12}{13}$B.$\frac{5}{13}$C.-$\frac{12}{13}$D.-$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}中,已知a3+a8=12,那么S10的值是60.

查看答案和解析>>

同步练习册答案