精英家教网 > 高中数学 > 题目详情
16.在△ABC中,A=120°,AB=4,若点D在边BC上,且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,AD=$\frac{2\sqrt{7}}{3}$,则AC的长.

分析 画出图形,结合图形,利用$\overrightarrow{BD}$=2$\overrightarrow{DC}$,得出$\overrightarrow{AD}$-$\overrightarrow{AB}$=2($\overrightarrow{AC}$-$\overrightarrow{AD}$),再利用平面向量的数量积求出|$\overrightarrow{AC}$|即可.

解答 解:如图所示:

△ABC中,∠BAC=120°,AB=4,点D在边BC上,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,
∴$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$,
$\overrightarrow{DC}$=$\overrightarrow{AC}$-$\overrightarrow{AD}$,
∴$\overrightarrow{AD}$-$\overrightarrow{AB}$=2($\overrightarrow{AC}$-$\overrightarrow{AD}$),
∴3$\overrightarrow{AD}$=2$\overrightarrow{AC}$+$\overrightarrow{AB}$,
两边平方得9${\overrightarrow{AD}}^{2}$=4${\overrightarrow{AC}}^{2}$+4$\overrightarrow{AC}$•$\overrightarrow{AB}$+${\overrightarrow{AB}}^{2}$,
又AD=$\frac{2\sqrt{7}}{3}$,
∴9×${(\frac{2\sqrt{7}}{3})}^{2}$=4${\overrightarrow{AC}}^{2}$+4×|$\overrightarrow{AC}$|×4×cos120°+42
化简得${|\overrightarrow{AC}|}^{2}$-2|$\overrightarrow{AC}$|-3=0,
解得|$\overrightarrow{AC}$|=3或|$\overrightarrow{AC}$|=-1(不合题意舍去),
∴AC的长为3.

点评 本题考查了利用平面向量的线性运算与数量积运算求三角形边长的应用问题,是基础题目

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.计算:
(1)sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{4}$;
(2)cos105°cos15°=$-\frac{1}{4}$;
(3)sin2$\frac{π}{12}$-cos2$\frac{π}{12}$=$-\frac{\sqrt{3}}{2}$;
(4)$\frac{tan67.5°}{1-ta{n}^{2}67.5°}$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等比数列{an}中,若$\frac{{a}_{8}}{{a}_{4}}$=2,S4=4,则S8=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,已知a、b、c分别是内角A、B、C的对边,且满足2acosB+ccosB+bcosC=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{13}$,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若{an}是公差为1的等差数列,则{a2n-1+2a2n}的公差为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=4-x+2x与g(x)=4x+2-x-m的图象上存在关于x轴对称的点,则m的取值范围是(  )
A.(-∞,-$\frac{9}{4}$]B.(-2,+∞)C.[-$\frac{9}{4}$,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某单位为了了解用电量Y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温数据如表格所示.若由表中数据得回归直线方程y=bx+a中b=-2,据此预测当气温为15℃时,用电量的度数约为(  )
气温(℃)141286
用电量(度)22263438
A.20B.25C.30D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.原命题:在空间中,若四点不共面,则这四个点中任何三点都不共线.其逆命题为假(真、假).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P在正△ABC所确定的平面上,且满足$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{AB}$,则△ABP的面积与△BCP的面积之比为(  )
A.1:1B.1:2C.1:3D.1:4

查看答案和解析>>

同步练习册答案