精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=4-x+2x与g(x)=4x+2-x-m的图象上存在关于x轴对称的点,则m的取值范围是(  )
A.(-∞,-$\frac{9}{4}$]B.(-2,+∞)C.[-$\frac{9}{4}$,+∞)D.[4,+∞)

分析 根据对称性质得到m=4-x+2x+4x+2-x,设2x=t,则t>0,则m=$\frac{1}{{t}^{2}}$+t+t2+$\frac{1}{t}$,利用基本不等式即可求出.

解答 解:函数f(x)=4-x+2x与g(x)=4x+2-x-m的图象上存在关于x轴对称的点,
则方程4-x+2x=-(4x+2-x-m)?m=4-x+2x+4x+2-x有解,
设2x=t,则t>0,
∴m=$\frac{1}{{t}^{2}}$+t+t2+$\frac{1}{t}$≥2$\sqrt{t•\frac{1}{t}}$+2$\sqrt{{t}^{2}•\frac{1}{{t}^{2}}}$=2+2=4,当且仅当t=1时取等号,
∴m≥4,
故选:D.

点评 本题考查了构造函数法求方程的解及参数范围以及基本不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.与α终边关于原点对称的角的集合{β|β=k•360°+180°+α,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$,g(x)=ax-a.
(1)若函数g(x)的图象与函数f(x)的图象相切,求a的值及切点的坐标;
(2)若m,n∈(0,1],且m>n,求证:$\root{mn}{\frac{{m}^{n}}{{n}^{m}}}$>em-n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有一动点P从原点出发,在时间t时的速度为v(t)=8t-2t2,解下列各小题:
(1)当t=3时,求点P离开原点的路程;
(2)求当t=5时,点P的位置;
(3)求t=0到t=5时,点P经过的路程;
(4)求点P经过时间t后又返回原点时的t值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,A=120°,AB=4,若点D在边BC上,且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,AD=$\frac{2\sqrt{7}}{3}$,则AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,$AB=AD=\frac{1}{2}CD=2$,$\overrightarrow{EM}=λ\overrightarrow{EC}(0<λ<1)$.
(1)当$λ=\frac{1}{2}$时,求证:BM∥平面ADEF;
(2)若平面BDM与平面ABF所成锐角二面角的余弦值为$\frac{1}{{\sqrt{38}}}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市一高中经过层层上报,被国家教育部认定为2015年全国青少年足球特色学校.该校成立了特色足球队,队员来自高中三个年级,人数为50人.视力对踢足球有一定的影响,因而对这50人的视力作一调查.测量这50人的视力(非矫正视力)后发现他们的视力全部介于4.75和5.35之间,将测量结果按如下方式分成6组:第一组[4.75,4.85),第二组[4.85,4.95),…,第6组[5.25,5.35],如图是按上述分组方法得到的频率分布直方图.又知:该校所在的省中,全省喜爱足球的高中生视力统计调查数据显示:全省100000名喜爱足球的高中生的视力服从正态分布N(5.01,0.0064).
(1)试评估该校特色足球队人员在全省喜爱足球的高中生中的平均视力状况;
(2)求这50名队员视力在5.15以上(含5.15)的人数;
(3)在这50名队员视力在5.15以上(含5.15)的人中任意抽取2人,该2人中视力排名(从高到低)在全省喜爱足球的高中生中前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,
P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,E为BD的中点.

(1)求证:BM⊥平面ADM;
(2)求直线AE与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=f(x),x∈R,给出下列结论:
①若对于任意x1,x2且x1≠x2都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,则f(x)为R上的减函数;
②若f(x)为R上的偶函数,且在(-∞,0)内是减函数,f(-2)=0则f(x)>0的解集为(-2,2);
③若f(x)为R上的奇函数,则y=f(x)-f(|x|)也是R上的奇函数;
④t为常数,若对任意的x都有f(x-t)=f(x+t),则f(x)的图象关于x=t对称.
其中所有正确的结论序号为①.

查看答案和解析>>

同步练习册答案