精英家教网 > 高中数学 > 题目详情

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?

(2)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元? (工厂售出一个零件的利润=实际出厂单价-单件成本)

【答案】(1)当一次订购量为550个时,每个零件的实际出厂价恰好降为51元;(2);(3)当销售商一次订购500个零件时,该厂获得的利润为6000元.

【解析】试题分析:根据题目要求列式运算即可得到答案;

根据在不同范围时,关于的函数不同,为分段函数,即可求得答案;

写出利润的表达式,在的每一段上求最值,比较即可得到如何获得最大利润以及最大利润为多少;

解析:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为xo个,则xo=100+=550

因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元,

2)当0x100时,P=60

100x550时,P=60﹣0.02x﹣100=62﹣

x550 P=51

P=fx= xN

3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则

L=P﹣40x= xN

x=500 L=6000.当销售商一次订购500个零件时,该厂获得的利润为6000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为奇函数,且实数

(1)求的值;

(2)判断函数的单调性,并写出证明过程;

(3)当时,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的中线与中位线相交于已知旋转过程中的一个图形,给出以下四个命题:平面②平面平面③动点在平面上的射影在线段上;④异面直线不可能垂直. 其中正确命题的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,点M在线段PD上.

(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得

(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;

(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?

附:在 中, 其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )是偶函数.

(1)求的值;

(2)设函数,其中.若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面

(1)求三棱锥的体积;

(2)在平面内经过点,画一条直线,使,请写出作法,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案