精英家教网 > 高中数学 > 题目详情
6.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P-ABC的外接球的表面积为(  )
A.48πB.12πC.4$\sqrt{3}$πD.32$\sqrt{3}$π

分析 证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积.

解答 解:∵三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,
∴△PAB≌△PAC≌△PBC
∵PA⊥PB,
∴PA⊥PC,PB⊥PC
以PA、PB、PC为过同一顶点的三条棱,作长方体如图
则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{4+4+4}$=2$\sqrt{3}$,
∴球直径为2$\sqrt{3}$,半径R=$\sqrt{3}$,
因此,三棱锥P-ABC外接球的表面积是4πR2=4π×($\sqrt{3}$)2=12π
故选:B.

点评 本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.“若$x=\frac{π}{3}$,则$sinx=\frac{{\sqrt{3}}}{2}$”的逆命题为真
B.a,b,c为实数,若a>b,则ac2>bc2
C.命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,使得x2+x-1>0
D.若命题?p∧q为真,则p假q真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow a,\overrightarrow b$,$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\frac{1}{3}|{\overrightarrow a}|$,$|{\overrightarrow a-\frac{1}{2}\overrightarrow b}|=\frac{{\sqrt{43}}}{3}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,复数z=(1-i)(1+i)的模|z|的值是(  )
A.4B.2C.4iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点,且$\frac{PM}{PC}$=λ(λ∈[0,1]).
(Ⅰ) 求证:BC⊥PC;
(Ⅱ) 试确定λ的值,使得二面角P-AD-M的平面角余弦值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.
(Ⅰ)求证:AD∥OC;
(Ⅱ)若圆O的半径为2,求AD•OC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知n=$\int_1^{e^4}{\frac{1}{x}}$dx,那么${(x-\frac{3}{x})^n}$展开式中含x2项的系数为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$ax2-lnx,g(x)=bx,a,b∈R,h(x)=f(x)-g(x)
(1)当a=$\frac{3}{2}$时,求f(x)的极值;
(2)当a>0,且a为常数时,若函数p(x)=x[h(x)+lnx]对任意的x1>x2≥4,$\frac{p({x}_{1})-p({x}_{2})}{{x}_{1}-{x}_{2}}$>-1恒成立,试用a表示出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y+2≥0}\\{x-y+1≥0}\end{array}\right.$表示的区域为D,z=x+y是定义在D上的目标函数,则区域D的面积为$\frac{25}{2}$,z的最大值为5.

查看答案和解析>>

同步练习册答案