精英家教网 > 高中数学 > 题目详情
18.已知n=$\int_1^{e^4}{\frac{1}{x}}$dx,那么${(x-\frac{3}{x})^n}$展开式中含x2项的系数为-12.

分析 利用定积分,求出n,然后利用二项式定理求解即可.

解答 解:n=$\int_1^{e^4}{\frac{1}{x}}$dx=lnx${|}_{1}^{{e}^{4}}$=4.
${(x-\frac{3}{x})^n}$=${(x-\frac{3}{x})}^{4}$,展开式的通项公式为:${C}_{4}^{r}{x}^{4-r}({-\frac{3}{x})}^{r}$=${C}_{4}^{r}{x}^{4-2r}{(-3)}^{r}$.
令4-2r=2,可得r=1,展开式中含x2项的系数${C}_{4}^{1}(-3)^{1}$=-12,
故答案为:-12.

点评 本题考查考查定积分以及二项式定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一位母亲在孩子的成长档案中记录了年龄和身高间的数据(截取其中部分):
年龄(周岁)3456789
身高94.8104.2108.7117.8124.3130.8139.1
根据以上样本数据,建立了身高y(cm)与年龄x(周岁)的线性回归方程为$\widehat{y}$=7.19x+a,可预测该孩子10周岁时的身高为(  )
A.142.8cmB.145.9cmC.149.8cmD.151.7cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式|x-3|≤9-|x|的解集是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P-ABC的外接球的表面积为(  )
A.48πB.12πC.4$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)满足当x>0时,3f(x)-2f($\frac{1}{x}$)=$\frac{x}{x+1}$,则f(-2)等于(  )
A.$\frac{8}{13}$B.$\frac{4}{3}$C.$\frac{4}{15}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,AB=2AC=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-1,若$\overrightarrow{AO}$=x1•$\overrightarrow{AB}$+x2•$\overrightarrow{AC}$(O是△ABC的外心),则x1+x2的值为$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在高中数学课本中我们见过许多的“信息技术应用”,我们可以利用几何画板软件的拖动、动画及计算等功能来研究许多数学问题,比如:在平面内做一条线段KL,以定点A为圆心,以|KL|为半径作一圆,在圆内取一定点F,在圆上取动点B,作线段BF的中垂线与圆A的半径AB交于点P.当点B在圆上运动时,就会发现点P的运动轨迹.
(Ⅰ)你能猜出点P的轨迹是什么曲线吗?请说明理由;若|KL|=6,|AF|=4,以线段AF的中点O为原点,以直线AF为x轴,建立平面直角坐标系,试求点P的轨迹方程;
(Ⅱ)在(Ⅰ)的条件下,过点A作直线l与点P的轨迹交于两点M、N,试求线段MN的中点Q的轨迹方程;
(Ⅲ)拖动改变线段KL的长度,会发现点P的轨迹C的形状在发生变化,请问在保持(Ⅰ)中轨迹C类型不变的前提下,当C的离心率e在什么范围变化时,C上总存在点R,使得AR⊥FR?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=1,an+1=2an-n+2,数列{bn}为等差数列,b2=a2,b5=a3
(1)求an、bn
(2)设cn=anbn-n2,求数列{cn}的前n项和Tn
(3)设Sn是数列{an}的前n项和,求证:对一切n>2,n∈N*,都有Tn>2Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”.已知f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2,若对任意的实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案