精英家教网 > 高中数学 > 题目详情
9.不等式|x-3|≤9-|x|的解集是[-3,6].

分析 不等式即即|x-3|+|x|≤9,再利用绝对值的意义,求得原不等式的解集.

解答 解:不等式|x-3|≤9-|x|,即|x-3|+|x|≤9.
而|x-3|+|x|表示数轴上的x对应点到3、0距离之和,
而-3和6对应点到3、0距离之和正好等于9,故原不等式的解集为[-3,6],
故答案为:[-3,6].

点评 本题主要考查绝对值的意义,绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-1)2,g(x)=alnx,其中a∈R.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在x=2处的切线互相垂直,求实数a的值;
(Ⅱ)记F(x)=f(x+1)-g(x),讨论函数F(x)的单调性;
(Ⅲ)设函数G(x)=f(x)+g(x)两个极值点分别为x1,x2,且x1<x2,求证:G(x2)>$\frac{1}{4}-\frac{1}{2}$ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,内角A、B、C的对边分别为a,b,c.若cosB=$\frac{1}{4},sinC=2sinA,{S_{△ABC}}=\frac{{\sqrt{15}}}{4}$,则b=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow a,\overrightarrow b$,$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\frac{1}{3}|{\overrightarrow a}|$,$|{\overrightarrow a-\frac{1}{2}\overrightarrow b}|=\frac{{\sqrt{43}}}{3}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知点S(-2,0)和圆O:x2+y2=4,ST是圆O的直径,从左到右M、O和N依次是ST的四等分点,P(异于S,T)是圆O上的动点,PD⊥ST,交ST于D,$\overrightarrow{PE}$=λ$\overrightarrow{ED}$,直线PS与TE交于C,|CM|+|CN|为定值.
(1)求点C的轨迹曲线Γ的方程及λ的值;
(2)设n是过原点的直线,直线l与n垂直相交于Q点,l与轨迹Γ相交于A,B两点,且|$\overrightarrow{OQ}$|=1.是否存在直线l,使$\overrightarrow{AQ}$•$\overrightarrow{QB}$=1成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,复数z=(1-i)(1+i)的模|z|的值是(  )
A.4B.2C.4iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点,且$\frac{PM}{PC}$=λ(λ∈[0,1]).
(Ⅰ) 求证:BC⊥PC;
(Ⅱ) 试确定λ的值,使得二面角P-AD-M的平面角余弦值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知n=$\int_1^{e^4}{\frac{1}{x}}$dx,那么${(x-\frac{3}{x})^n}$展开式中含x2项的系数为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,O为坐标原点,点A、B分别在双曲线的两条渐近线上,AF⊥x轴,BF⊥x轴,BF∥OA,$\overrightarrow{AB}$•$\overrightarrow{OB}$=0,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案