精英家教网 > 高中数学 > 题目详情
11.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.
(Ⅰ)求证:AD∥OC;
(Ⅱ)若圆O的半径为2,求AD•OC的值.

分析 (Ⅰ)要证明AD∥OC,我们要根据直线平行的判定定理,观察已知条件及图形,我们可以连接OD,构造出内错角,只要证明∠1=∠3即可得证.
(Ⅱ)因为⊙O的半径为1,而其它线段长均为给出,故要想求AD•OC的值,我们要将其转化用半径相等或相关的线段积的形式,结合(Ⅰ)的结论,我们易证明Rt△BAD∽Rt△ODC,根据相似三角形性质,不们不难得到转化的思路.

解答 (Ⅰ)证明:如图,连接BD、OD.
∵CB、CD是⊙O的两条切线,
∴BD⊥OC,
∴∠2+∠3=90°
又AB为⊙O直径,
∴AD⊥DB,
∠1+∠2=90°,
∴∠1=∠3,
∴AD∥OC;
(Ⅱ)解:AO=OD,则∠1=∠A=∠3,
∴Rt△BAD∽Rt△ODC,
∵圆O的半径为2,
∴AD•OC=AB•OD=8.

点评 根据求证的结论,使用分析推敲证明过程中所需要的条件,进而分析添加辅助线的方法,是平面几何证明必须掌握的技能,大家一定要熟练掌握,而在(2)中根据已知条件分析转化的方向也是解题的主要思想.解决就是寻找解题的思路,由已知出发,找寻转化方向和从结论出发寻找转化方向要结合在一起使用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.
已知某几何体的三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.则该几何体的表面积是$64+32\sqrt{2}$;体积是$\frac{160}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}是公比为$\frac{1}{2}$的等比数列,数列{bn}满足a1=$\sqrt{2}$b1=1,且an+12=$\frac{({a}_{n}+{b}_{n})^{2}}{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,bn+1=1+$\frac{{b}_{n}}{{a}_{n}}$,n∈N+,若cn=$\frac{{{b}_{n}}^{2}}{{{a}_{n}}^{2}}$;
(1)求证:数列{cn}是等差数列,并求出{cn}的通项公式;
(2)记数列{cn}的前n项和为Sn,若对于?n∈N+,不等式$\sum_{i=1}^{n}$ai$\sqrt{{S}_{i}}$≤k-$\frac{\sqrt{2}n}{{2}^{n}}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有4名优秀学生A,B,C,D全部被保送到甲,乙,丙3所学校,每所学校至少去一名,则不同的保送方案共有(  )
A.26种B.32种C.36种D.56种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P-ABC的外接球的表面积为(  )
A.48πB.12πC.4$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,若集合A={y|y=3-2-x},B={x|x=$\frac{x-2}{x}$≤0},则A∩(CUB)=(  )
A.(-∞,0)∪[2,3)B.(-∞,0]∪(2,3)C.[0.2)D.[0.3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,AB=2AC=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-1,若$\overrightarrow{AO}$=x1•$\overrightarrow{AB}$+x2•$\overrightarrow{AC}$(O是△ABC的外心),则x1+x2的值为$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知点C是圆心为O半径为1的半圆弧上从点A数起的第一个三等分点AB是圆O的直径,CD=1,且CD⊥平面ABC,E是AD的中点
(1)求证:AC⊥BD;
(2)求点C到平面ABD的距离.
(3)求二面角O-EC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.实数列a0,a1,a2,a3,…,由下述等式定义:an+1=2n-3an,n=0,1,2,3,…
(1)若a0为常数,求a1,a2,a3的值;
(2)令bn=$\frac{{a}_{n}}{(-3)^{n}}$,求数列{bn}(n∈N)的通项公式(用a0、n来表示);
(3)是否存在实数a0,使得数列{an}(n∈N)是单调递增数列?若存在,求出a0的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案