精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+sin(x+\frac{π}{3}),\begin{array}{l}{\;}{x>0}\end{array}}\\{-{x^2}+cos(x+α),x<0}\end{array}}$,α∈[0,2π)是奇函数,则α=$\frac{7π}{6}$.

分析 利用查奇函数的定义、诱导公式,即可得出结论.

解答 解:由题意,f(-x)=-f(x),设x>0,则-x2+cos(-x+α)=-x2-sin(x+$\frac{π}{3}$)
∴cos(-x+α)=-sin(x+$\frac{π}{3}$)=cos(x-$\frac{7π}{6}$)
∵α∈[0,2π),∴α=$\frac{7π}{6}$;
故答案为$\frac{7π}{6}$.

点评 本题主要考查奇函数的定义、诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知二次函数f(x)=ax2-2x+c的值域为[0,+∞),则$\frac{9}{a}+\frac{1}{c}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图(1)在平面六边形ABCDEF中,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=$\sqrt{2}$,BF=CF=$\sqrt{5}$,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.
(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;
结论1:过空间一点作已知直线的垂面,有且只有一个;
结论2:过平面内一条直线作该平面的垂面,有且只有一个.
(2)若二面角E-AD-B和二面角F-BC-A都是60°,求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区--龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄频数频率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合计1001.004555
(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列
(表二)
50岁以上50岁以下合计
男生54045
女生154055
合计2080100
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中真命题的个数是(  )
①函数y=sinx,其导函数是偶函数;
②“若x=y,则x2=y2”的逆否命题为真命题;
③“x≥2”是“x2-x-2≥0”成立的充要条件;
④命题p:“?x0∈R,x02-x0+1<0”,则命题p的否定为:“?x∈R,x2-x+1≥0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x∈N|($\frac{1}{2}$)x≤1},B={x|x2-2x-8≤0},则A∩B=(  )
A.{x|0≤x≤4}B.{0,1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ex+m(m为常数),则f(m)=(  )
A.e-1B.1-eC.$1-\frac{1}{e}$D.$\frac{1}{e}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是$\frac{1}{2}$和$\frac{2}{3}$,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.
(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;
(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x(x-1)<2},且A∪B=A,则集合B可能是(  )
A.{-1,2}B.{0,1}C.{-1,0}D.{0,2}

查看答案和解析>>

同步练习册答案