精英家教网 > 高中数学 > 题目详情
6.如图(1)在平面六边形ABCDEF中,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=$\sqrt{2}$,BF=CF=$\sqrt{5}$,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.
(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;
结论1:过空间一点作已知直线的垂面,有且只有一个;
结论2:过平面内一条直线作该平面的垂面,有且只有一个.
(2)若二面角E-AD-B和二面角F-BC-A都是60°,求三棱锥E-BCF的体积.

分析 (1)由题意,点E在底面ABCD的射影在MN上,可设为点P,同理,点F在底面ABCD的射影在MN上,可设为点Q,推导出平面EMP⊥平面ABCD,平面FNQ⊥平面ABCD,由结论2能证明E、F、M、N四点共面.
(2)三棱锥E-BCF的体积VE-BCF=VABCDEF-VE-ABCD,由此能求出结果.

解答 证明:(1)由题意,点E在底面ABCD的射影在MN上,可设为点P,
同理,点F在底面ABCD的射影在MN上,可设为点Q,
则EP⊥平面ABCD,FQ⊥平面ABCD,
∴平面EMP⊥平面ABCD,平面FNQ⊥平面ABCD,
又MN?平面ABCD,MN?平面EMP,MN?平面FNQ,
由结论2:过平面内一条直线作该平面的垂面,有且只有一个,
得到E、F、M、N四点共面.
解:(2)∵二面角E-AD-B和二面角F-BC-A都是60°,
∴∠EMP=∠FNQ=60°,∴EP=EM•sin60°=$\frac{\sqrt{3}}{2}$,
∴三棱锥E-BCF的体积:
VE-BCF=VABCDEF-VE-ABCD
=2×$\frac{1}{3}×(\frac{1}{2}×2)×\frac{\sqrt{3}}{2}$+($\frac{1}{2}×\frac{\sqrt{3}}{2}×2$)×3-$\frac{1}{3}×(4×2)$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查四点共面的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知在等腰△AOB中,若|OA|=|OB|=5,且$|{\overrightarrow{OA}+\overrightarrow{OB}}|≥\frac{1}{2}|{\overrightarrow{AB}}|$,则$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围是(  )
A.[-15,25)B.[-15,15]C.[0,25)D.[0,15]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在以A、B、C、D、E为顶点的五面体中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O为AB的中点,F是线段BE上的一点,BE=4BF,证明:OF∥平面CDE;
(2)当直线DE与平面CBE所成角的正切值为$\frac{2\sqrt{2}}{3}$时,求平面CDE与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.社区服务是综合实践活动课程的重要内容.上海市教育部门在全市高中学生中随机抽取200位学生参加社区服务的数据,按时间段[65,70),[70,75),[75,80),[80,85),[85,90)(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于80小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于80小时的概率;
(Ⅱ)从全市高中学生中任意选取3位学生,记ξ为3名学生中参加社区服务时间不少于80小时的人数,试求随机变量ξ的分布列和数学期望Eξ和方差Dξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\frac{z}{(1+i)^{2}}$=1-i(i为虚数单位),则复数z在复平面内对应的点的坐标是(  )
A.(2,-2)B.(2,2)C.(-2,-2)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n?γ,则下列判断一定正确的是(  )
A.m∥γ,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足$\left\{\begin{array}{l}{x+y≥4}\\{{x}^{2}+{y}^{2}≤16}\end{array}\right.$,则z=x2+6x+y2+8y+25的取值范围是(  )
A.[$\frac{121}{2}$,81]B.[$\frac{121}{2}$,73]C.[65,73]D.[65,81]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+sin(x+\frac{π}{3}),\begin{array}{l}{\;}{x>0}\end{array}}\\{-{x^2}+cos(x+α),x<0}\end{array}}$,α∈[0,2π)是奇函数,则α=$\frac{7π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新3县空气质量进行调查,按地域特点在三县内设置空气质量观测点,已知三县内观测点的个数分别为6,y,z,依次构成等差数列,且6,y,z+6成等比数列,若用分层抽样的方法抽取12个观测点的数据,则容城应抽取的数据个数为(  )
A.8B.6C.4D.2

查看答案和解析>>

同步练习册答案