分析 (1)解方程x2-14x+45=0,得a3=5,a5=9,从而得a1=1,d=2,由此能求出数列{an}的通项公式.
(2)由${b}_{n}=\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$),利用裂项求和法求出Tn=$\frac{n}{2n+1}$,由对任意的n∈N+,不等式λTn<n+2恒成立,得到λ<$\frac{n+2}{{T}_{n}}$=2n+$\frac{2}{n}+5$,由此能求出实数λ的取值范围.
解答 解:(1)∵单调递增的等差数列{an}满足:a3a5=45,a2+a6=14,
∴a3+a5=14,a3<a5,
∴a3,a5是方程x2-14x+45=0的两个根,
解方程x2-14x+45=0,得a3=5,a5=9,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=5}\\{{a}_{1}+4d=9}\end{array}\right.$,解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵${b_n}=\frac{1}{{{a_n}{a_{n+1}}}},{T_n}$为数列{bn}的前n项和,
∴${b}_{n}=\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}-\frac{1}{5}$+$…+\frac{1}{2n-1}-\frac{1}{2n+1}$)=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$,
∵对任意的n∈N+,不等式λTn<n+2恒成立,
∴λ<$\frac{n+2}{{T}_{n}}$=(n+2)×$\frac{2n+1}{n}$=$\frac{2{n}^{2}+5n+2}{n}$=2n+$\frac{2}{n}+5$,
∵n∈N+,∴2n+$\frac{2}{n}$≥2$\sqrt{2n×\frac{2}{n}}$=4,当2n=$\frac{2}{n}$,即n=1时,取等号,
∴λ<9.
∴实数λ的取值范围是(-∞,9).
点评 本题考查数列的通项公式的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意等差数列的性质和裂项求和法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com