精英家教网 > 高中数学 > 题目详情
下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A、f(x)=x3
B、f(x)=3x
C、f(x)=x 
1
2
D、f(x)=(
1
2
x
考点:抽象函数及其应用
专题:函数的性质及应用
分析:对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.
解答: 解:A.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故A错;
B.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故B正确;
C.f(x)=x
1
2
,f(y)=y
1
2
,f(x+y)=(x+y)
1
2
,不满足f(x+y)=f(x)f(y),故C错;
D.f(x)=(
1
2
)x
,f(y)=(
1
2
)y
,f(x+y)=(
1
2
)x+y
,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故D错.
故选B.
点评:本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=cos2x+2sinx的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l与曲线C满足下列两个条件:
(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.
下列命题正确的是
 
(写出所有正确命题的编号).
①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3
②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2
③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx
④直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx
⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=3sin(2x+
π
3
)的图象向右平移
π
2
个单位长度,所得图象对应的函数(  )
A、在区间[
π
12
12
]上单调递减
B、在区间[
π
12
12
]上单调递增
C、在区间[-
π
6
π
3
]上单调递减
D、在区间[-
π
6
π
3
]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
A、72cm3
B、90cm3
C、108cm3
D、138cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

1+3i
1-i
=(  )
A、1+2iB、-1+2i
C、1-2iD、-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(  )
表1
     成绩
性别
不及格及格总计
61420
102232
总计163652
表2
  视力
性别
总计
41620
122032
总计163652
表3
  智商
性别
偏高正常总计
81220
82432
总计163652
表4
  阅读量
性别
丰富不丰富总计
14620
23032
总计163652
A、成绩B、视力C、智商D、阅读量

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=(  )
A、n(n+1)
B、n(n-1)
C、
n(n+1)
2
D、
n(n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(Ⅰ)证明:an+2-an
(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.

查看答案和解析>>

同步练习册答案