精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=loga(x+3)-1的图象经过定点A,且点A在直线mx+ny=1(m<0,n<0)上,则$\frac{1}{m}$+$\frac{1}{n}$的最大值为-3-2$\sqrt{2}$.

分析 令对数的真数等于1,求得x、y的值,可得函数的图象经过定点A的坐标,把点A的坐标代入直线mx+ny=1,利用基本不等式求得$\frac{1}{m}$+$\frac{1}{n}$的最大值.

解答 解:∵令x+3=1,求得x=-2,y=-1,可得 函数f(x)=loga(x+3)-1的图象经过定点A(-2,-1),
根据点A在直线mx+ny=1(m<0,n<0)上,可得-2m-n=1,
则$\frac{1}{m}$+$\frac{1}{n}$=$\frac{-2m-n}{m}$+$\frac{-2m-n}{n}$=-3-$\frac{n}{m}$-$\frac{2m}{n}$=-3-($\frac{n}{m}$+$\frac{2m}{n}$)≤-3-2$\sqrt{2}$,当且仅当$\frac{n}{m}$=$\frac{2m}{n}$时,取等号,
故$\frac{1}{m}$+$\frac{1}{n}$ 的最大值为-3-2$\sqrt{2}$,
故答案为:-3-2$\sqrt{2}$.

点评 本题主要考查对数函数的单调性和特殊点,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.化简:$\frac{{C_m^m+2C_{m+1}^m+3C_{m+2}^m+…+nC_{m+n-1}^m}}{{C_{m+n}^{m+1}}}$=$\frac{(m+1)n+1}{m+2}$(用m、n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数f(x)=log2[(a+2)x2+(a+2)x+1]的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,则AB1与C1B所成的角的余弦值0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知tan($\frac{π}{4}$+α)=$\frac{1}{2}$;求$\frac{sinα-cosα}{sinα+cosα}$的值.
(2)求sin$\frac{π}{12}$•sin$\frac{5π}{12}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“$\frac{1}{x}$<2”是“x>$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某工厂生产的某产品中抽取500件,测量这些产品的一项质量指标,由测量结果得到下列频数分布表:
指标值分组[75,85)[85,95)[95,105)[105,115)[115,125]
频数3012021010040
(1)作出这些数据的频率分布直方图,并估计该产品质量指标值的平均数$\overline x$及方差s2(同一组中的数据用该组的中点值作代表);
(2)可以认为这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2.近似为样本方差s2; 一件产品的质量指标不小于110时该产品为优质品;利用该正态分布,计算这种产品的优质品率p(结果保留小数点后4位).
(以下数据可供使用:若Z~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知随机变量ξ服从正态分布N(1,4),若p(ξ>4)=0.1,则p(-2≤ξ≤4)=0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定点A(3,1),B是x轴上的动点,C是直线y=x上的动点,则△ABC周长的最小值是(  )
A.3$\sqrt{5}$B.$\sqrt{6}$C.2$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案