精英家教网 > 高中数学 > 题目详情
4.已知f(x)是定义在R上的不恒等于0的偶函数,且对于任意实数x都有xf(x+1)=(x+1)f(x),则$f(\frac{9}{2})$的值为(  )
A.1B.0C.$\frac{1}{2}$D.$\frac{9}{2}$

分析 从xf(x+1)=(1+x)f(x)结构来看,要用递推的方法,先用赋值法结合函数奇偶性的性质,再由依此求解.

解答 解:由xf(x+1)=(1+x)f(x),
令x=-$\frac{1}{2}$,得-$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{2}$f(-$\frac{1}{2}$),
即-f($\frac{1}{2}$)=f(-$\frac{1}{2}$),
又∵f(x)为偶函数,
∴f($\frac{1}{2}$)=0,
则$\frac{1}{2}$f($\frac{3}{2}$)=$\frac{3}{2}$f($\frac{1}{2}$),
所以f($\frac{3}{2}$)=0,以此类推,可得f($\frac{1}{2}$)=f($\frac{3}{2}$)=…=f($\frac{9}{2}$)=0,
故选:B.

点评 本题考查函数值的计算,以及函数奇偶性的性质的应用,熟练掌握函数奇偶性的性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.3${\;}^{lo{g}_{3}5}$+(2005)0-($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+sin$\frac{7π}{6}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b为直线,α为平面,且a?α,则以下命题正确的是(  )
A.若b∥a,则b∥αB.若b⊥α,则b⊥aC.若b∥α,则b∥aD.若b⊥a,则b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式组$\left\{\begin{array}{l}{4x-y≥0}\\{3x-2y-6≤0}\\{2x+y-5≤0}\end{array}\right.$所表示的平面区域为Ω,则Ω上的点到点M(2,-6)的最短距离为(  )
A.1B.2C.$\frac{12\sqrt{13}}{13}$D.$\frac{28\sqrt{13}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{x+1,-1<x<0}\\{{x}^{2},0≤x≤5}\end{array}\right.$,则f(x)的定义域是{x|-1<x≤5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据二分法原理求解方程x2-4=0得到的框图可称为(  )
A.知识结构图B.组织结构图C.工序流程图D.程序流程图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算由直线y=$\frac{2}{3}x-\frac{4}{3}$,曲线y=$\sqrt{2x}$以及x轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x)=1-2x,则不等式|f(x+1)+4|≤3的解集为[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,sin2x≤1,则(  )
A.¬p:?x0∈R,sin2x0≥1B.¬p:?x∈R,sin2x≥1
C.¬p:?x0∈R,sin2x0>1D.¬p:?x∈R,sin2x>1

查看答案和解析>>

同步练习册答案