精英家教网 > 高中数学 > 题目详情
13.已知F为双曲线$C:\frac{x^2}{3a}-\frac{y^2}{3}=1(a>0)$的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{3}$B.3C.$\sqrt{3}a$D.3a

分析 求出双曲线的a,b,c,可设F($\sqrt{3a+3}$,0),设双曲线的一条渐近线方程,运用点到直线的距离公式计算即可得到.

解答 解:双曲线$C:\frac{x^2}{3a}-\frac{y^2}{3}=1(a>0)$中c=$\sqrt{3a+3}$,
则可设F($\sqrt{3a+3}$,0),
设双曲线的一条渐近线方程为y=$\sqrt{\frac{1}{a}}$x,
则F到渐近线的距离为d=$\frac{\sqrt{\frac{3a+3}{a}}}{\sqrt{\frac{1}{a}+1}}$=$\sqrt{3}$,
故选:A.

点评 本题考查双曲线的方程和性质,考查渐近线方程的运用,考查点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是偶函数又在(-∞,0)内为增函数的是(  )
A.y=($\frac{1}{2}$)xB.y=x-2C.y=x2+1D.y=log3(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.命题P:函数y=lg(-x2+4ax-3a2)(a>0)有意义,命题q:实数x满足$\frac{x-3}{x-2}<0$.
(1)当a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,以坐标原点O和A(5,2)为顶点作等腰直角△ABO,使∠B=90°,求点B和向量$\overrightarrow{AB}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象关于原点对称,且当x=1时,f(x)取极小值-2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)解关于x的不等式f(x)>5mx2-(4m2+3)x(m∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在含有3件次品的100件产品中,任取2件,求:
(Ⅰ)取到的次品数X的分布列(分布列中的概率值用分数表示,不能含组合符号);
(Ⅱ)至少取到1件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有一椭圆形溜冰场,长轴长100m,短轴长60m.现要在这溜冰场上划定一个各顶点都在溜冰场边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?这时矩形的周长是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数f(x)满足:$\frac{f'(x)-f(x)}{e^x}=x$,且f(0)=$\frac{1}{2}$,则$\frac{f(x)}{{|x|•{e^x}}}$的最小值为(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.抛物线y2=8x与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点,且该焦点到双曲线C的渐近线的距离为1,则双曲线C的方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{3}$=1C.$\frac{{x}^{2}}{9}$-y2=1D.$\frac{{x}^{2}}{3}$-y2=1

查看答案和解析>>

同步练习册答案