精英家教网 > 高中数学 > 题目详情
10.以下四个命题:
①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为$\frac{1+a}{2}$;
②设a、b∈R,则“log2a>log2b”是“2a-b>1”的充分不必要条件;
③函数f(x)=${x}^{\frac{1}{2}}$-($\frac{1}{2}$)x的零点个数为1;
④命题p:?n∈N,3n≥n2+1,则¬p为?n∈N,3n≤n2+1.
其中真命题的序号为②③.

分析 由曲线关于y轴对称,由概率分布特点,即可判断①;运用对数函数和指数函数的单调性,结合充分必要条件的定义,即可判断②;画出y=${x}^{\frac{1}{2}}$和y=($\frac{1}{2}$)x的图象,即可判断③;由全称命题的否定为特称命题,即可判断④.

解答 解:①已知随机变量X~N(0,σ2),若P(|X|<2)=a,
则P(X>2)=$\frac{1}{2}$(1-P(|X|<2))=$\frac{1-a}{2}$,故①错;
②设a、b∈R,log2a>log2b?a>b>0⇒a-b>0⇒2a-b>1,由于a-b>0,a,b不一定大于0,
则“log2a>log2b”是“2a-b>1”的充分不必要条件,故②对;
③由y=${x}^{\frac{1}{2}}$和y=($\frac{1}{2}$)x的图象,可得它们只有一个交点,
即函数f(x)=${x}^{\frac{1}{2}}$-($\frac{1}{2}$)x的零点个数为1,故③对;
④命题p:?n∈N,3n≥n2+1,则¬p为?n∈N,3n<n2+1.故④错.
故答案为:②③.

点评 本题考查命题的真假判断,主要是正态分布的特点和充分必要条件的判断、及函数的零点个数和命题的否定,考查判断能力和数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,且右焦点到一条渐近线的距离为$\sqrt{3}$,双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{3}=1$C.${y^2}-\frac{x^2}{3}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx-m+$\frac{2}{x+1}$.g(x)=ex(其中e为自然对数的底数),函数f(x)在点(1,f(1))处的切线方程为y=(a-$\frac{1}{2}$)x-a+$\frac{1}{2}$.
(1)若函数f(x)在(0,1)内是增函数,求实数a的取值范围.
(2)当b>0时,函数g(x)的图象C上有两点P(b,eb),Q(-b,e-b),过点P,Q作图象C的切线分别记为l1,l2,设l1与l2的交点为M(x0,y0),证明:g(x0)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=(  )
A.3$\sqrt{3}$B.-3或3C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:an=$\frac{{b}_{1}}{3+1}$+$\frac{{b}_{2}}{{3}^{2}+1}$+$\frac{{b}_{3}}{{3}^{3}+1}$+…+$\frac{{b}_{n}}{{3}^{n}+1}$,求数列{bn}的通项公式;
(3)令cn=$\frac{{a}_{n}{b}_{n}}{4}$(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.为了判断高中学生的文理科选修是否与性别有关系,随机调查了50名学生,得到如下2×2的列联表:
理科文科
1310
720
附:
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
根据表中数据,得到${x^2}=\frac{{50×{{({13×20-10×7})}^2}}}{23×27×20×30}≈4.844$,则认为选修文理科与性别有关系的可能性不低于95%.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知矩形的长为10,宽为5(如图所示),在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆为560颗,则可以估计阴影部分的面积为2.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|$\frac{3x-4}{2-x}$≥0},B={x|x2-2x<0},则A∩B=(  )
A.[$\frac{4}{3}$,2)B.[$\frac{3}{4}$,2]C.($\frac{3}{4}$,2)D.(-$∞,\frac{3}{4}$)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a∈R,若复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为$\frac{1}{2}$,则a的值为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.-2D.2

查看答案和解析>>

同步练习册答案