精英家教网 > 高中数学 > 题目详情
20.设a∈R,若复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为$\frac{1}{2}$,则a的值为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.-2D.2

分析 利用复数的运算法则、实部的定义即可得出.

解答 解:a∈R,复数z=$\frac{a-i}{3+i}$=$\frac{(a-i)(3-i)}{(3+i)(3-i)}$=$\frac{3a-1}{10}$+$\frac{-3-a}{10}$i的实部为$\frac{1}{2}$,
∴$\frac{3a-1}{10}$=$\frac{1}{2}$,解得a=2.
故选:D.

点评 本题考查了复数的运算法则、实部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.以下四个命题:
①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为$\frac{1+a}{2}$;
②设a、b∈R,则“log2a>log2b”是“2a-b>1”的充分不必要条件;
③函数f(x)=${x}^{\frac{1}{2}}$-($\frac{1}{2}$)x的零点个数为1;
④命题p:?n∈N,3n≥n2+1,则¬p为?n∈N,3n≤n2+1.
其中真命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}$(e是自然对数的底数),f(x)的图象在x=-$\frac{1}{2}$处的切线方程为y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值;
(2)探究直线y=$\frac{3}{4}x+\frac{9}{8}$.是否可以与函数g(x)的图象相切?若可以,写出切点的坐标,否则,说明理由;
(3)证明:当x∈(-∞,2]时,f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“对称数”是指从左到右读与从右到左读都一样的正整数,如121,666,54345等,则在所有的六位数中,不同的“对称数”的个数是(  )
A.100B.900C.999D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算定积分:
(1)${∫}_{1}^{2}$$\frac{1}{x}$dx
(2)${∫}_{0}^{\frac{π}{6}}$4cosxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义域为R的函数f(x)满足f(x+2)=$\sqrt{3}$f(x),x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,x∈[0,1)}\\{-2•(\frac{1}{3})^{|x-\frac{4}{3}|},x∈[1,2)}\end{array}\right.$,x
∈[-4,-2)时,f(x)≥t2-$\frac{7}{3}$t恒成立,则实数t的取值范围是(  )
A.[$\frac{1}{2}$,3)B.(-∞,$\frac{1}{2}$]∪(3,+∞)C.[$\frac{1}{3}$,2]D.(-∞,$\frac{1}{3}$]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设不等式$\left\{\begin{array}{l}{y>1}\\{2x-y≥0}\end{array}\right.$,表示的平面区域为D.若曲线y=ax2+1上存在无数个点在D内,则实数a的取值范围是(  )
A.(0,2)B.(1,+∞)C.(0,1)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.2017年2月为确保食品安全,鞍山市质检部门检查1000袋方便面的质量,抽查总量的2%,在这个问题中,下列说法正确的是(  )
A.总体是指这箱1000袋方便面B.个体是一袋方便面
C.样本是按2%抽取的20袋方便面D.样本容量为20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上任意一点M与左右顶点A1、A2连线的斜率之积为$\frac{3}{4}$,则双曲线的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{5}{4}$C.$\frac{\sqrt{7}}{2}$D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案