精英家教网 > 高中数学 > 题目详情
13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,且右焦点到一条渐近线的距离为$\sqrt{3}$,双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{3}=1$C.${y^2}-\frac{x^2}{3}=1$D.${x^2}-\frac{y^2}{4}=1$

分析 根据题意,由双曲线的离心率公式可得e=$\frac{c}{a}$=2,即c=2a,又由双曲线的性质可得b=$\sqrt{3}$,结合c2=a2+b2,计算可得a2的值,将a2、b2的值代入双曲线方程即可得答案.

解答 解:根据题意,双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,
则e=$\frac{c}{a}$=2,即c=2a,
又由右焦点到一条渐近线的距离为$\sqrt{3}$,则有b=$\sqrt{3}$,
又由c2=a2+b2,即4a2=a2+3,
则有a2=1,
则双曲线的方程为:x2-$\frac{{y}^{2}}{3}$=1;
故选:B.

点评 本题考查双曲线的几何性质,注意双曲线中焦点到渐近线的距离为b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,内角A,B,C的对边分别为a,b,c,cosA=$\frac{4\sqrt{3}}{3}$sin2C-cos(B-C),且$\frac{π}{2}$是A与3C的等差中项
(1)求tanB的值
(2)若b=2$\sqrt{2}$,求三角形△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.与向量$\overrightarrow a=({4,3})$方向相反的单位向量是$({-\frac{4}{5},-\frac{3}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.(x2-1)($\frac{1}{x}$-2)5的展开式的常数项为(  )
A.112B.48C.-112D.-48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{9}x,x>0}\\{{4}^{-x}+\frac{3}{2},x≤0}\end{array}\right.$,则f(27)+f(-log43)的值为(  )
A.6B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U=R,集合A={x|x(x-2)<0},B={x||x|≤1},则下列阴影部分表示的集合是(  )
A.(0,1]B.(-2,-1)∪[0,1]C.[-1,0]∪(1,2)D.[-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1,BC的中点.
(Ⅰ)证明:DE∥平面A1B1C;
(Ⅱ)若AB=2,∠BAC=60°,求三棱锥A1-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的通项公式为an=$\left\{\begin{array}{l}{\frac{1}{n},n=1,2}\\{(\frac{1}{2})^{n},n≥3}\end{array}\right.$,n∈N*,其前n项和为Sn,则$\underset{lim}{n→∞}$Sn=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.以下四个命题:
①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为$\frac{1+a}{2}$;
②设a、b∈R,则“log2a>log2b”是“2a-b>1”的充分不必要条件;
③函数f(x)=${x}^{\frac{1}{2}}$-($\frac{1}{2}$)x的零点个数为1;
④命题p:?n∈N,3n≥n2+1,则¬p为?n∈N,3n≤n2+1.
其中真命题的序号为②③.

查看答案和解析>>

同步练习册答案