分析 通过等比数列的求和公式可知当n≥3时$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$=$\frac{1}{{2}^{2}}$-$\frac{1}{{2}^{n}}$,进而取极限可得结论.
解答 解:由题可知$\underset{lim}{n→∞}$Sn=$\underset{lim}{n→∞}$(1+$\frac{1}{2}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$)
=$\underset{lim}{n→∞}$(1+$\frac{1}{2}$+$\frac{\frac{1}{{2}^{3}}(1-\frac{1}{{2}^{n-2}})}{1-\frac{1}{2}}$)
=$\underset{lim}{n→∞}$(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$-$\frac{1}{{2}^{n}}$)
=$\underset{lim}{n→∞}$($\frac{7}{4}$-$\frac{1}{{2}^{n}}$)
=$\frac{7}{4}$,
故答案为:$\frac{7}{4}$.
点评 本题考查考查数列的通项及前n项和,考查等比数列的求和公式,涉及极限思想,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,1) | B. | [-1,1] | C. | (-1,1) | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | B. | ${x^2}-\frac{y^2}{3}=1$ | C. | ${y^2}-\frac{x^2}{3}=1$ | D. | ${x^2}-\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$ | B. | -3或3 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{4}{3}$,2) | B. | [$\frac{3}{4}$,2] | C. | ($\frac{3}{4}$,2) | D. | (-$∞,\frac{3}{4}$)∪(2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com