精英家教网 > 高中数学 > 题目详情
17.若抛物线x2=2py(p>0)的焦点与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的一个顶点重合,则该抛物线的焦点到准线的距离为4.

分析 求出椭圆的顶点坐标,得到抛物线的焦点坐标,求出P即可得到结果.

解答 解:抛物线x2=2py(p>0)的焦点与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的一个顶点(0,2)重合,
抛物线的开口向上,焦点坐标(0,2),
可得p=4,则该抛物线的焦点到准线的距离为:p=4.
故答案为:4.

点评 本题考查椭圆的简单性质以及抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):6.2  7.0  7.6  5.9  6.7  7.3  6.5  8.1  7.8  7.9
(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{9}x,x>0}\\{{4}^{-x}+\frac{3}{2},x≤0}\end{array}\right.$,则f(27)+f(-log43)的值为(  )
A.6B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1,BC的中点.
(Ⅰ)证明:DE∥平面A1B1C;
(Ⅱ)若AB=2,∠BAC=60°,求三棱锥A1-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z1=a-5i在复平面上对应的点在直线5x+2y=0上,复数z=$\frac{5+2i}{{z}_{1}}$(i是虚数单位),则z2017=(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的通项公式为an=$\left\{\begin{array}{l}{\frac{1}{n},n=1,2}\\{(\frac{1}{2})^{n},n≥3}\end{array}\right.$,n∈N*,其前n项和为Sn,则$\underset{lim}{n→∞}$Sn=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“-3<a<1”是“存在x∈R,使得|x-a|+|x+1|<2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列框图中,可作为流程图的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设随机变量X~N(2,52),且P(X≤0)=P(X≥a-2),则实数a的值为(  )
A.6B.8C.10D.12

查看答案和解析>>

同步练习册答案