精英家教网 > 高中数学 > 题目详情
13.下列框图中,可作为流程图的是(  )
A.B.
C.D.

分析 根据流程图的概念依次判定各个选项即可得解.

解答 解:流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序,两个相邻工序之间用流程线相连;
对于A,没有流程,∴不是流程图;
对于B,没有流程,∴不是流程图;
对于C,表示图书借还的工序,有上下流程的关系,∴是流程图;
对于D,表示对数函数的知识内容,没有流程,∴不是流程图.
故选:C.

点评 本题主要考查了流程图的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标平面内,已知A(0,5),B(-1,3),C(3,t).
(1)若t=1,求证:△ABC为直角三角形;
(2)求实数t的值,使$|{\overrightarrow{AB}+\overrightarrow{AC}}|$最小;
(3)若存在实数λ,使$\overrightarrow{AB}=λ•\overrightarrow{AC}$,求实数λ、t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若抛物线x2=2py(p>0)的焦点与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的一个顶点重合,则该抛物线的焦点到准线的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx-m+$\frac{2}{x+1}$.g(x)=ex(其中e为自然对数的底数),函数f(x)在点(1,f(1))处的切线方程为y=(a-$\frac{1}{2}$)x-a+$\frac{1}{2}$.
(1)若函数f(x)在(0,1)内是增函数,求实数a的取值范围.
(2)当b>0时,函数g(x)的图象C上有两点P(b,eb),Q(-b,e-b),过点P,Q作图象C的切线分别记为l1,l2,设l1与l2的交点为M(x0,y0),证明:g(x0)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-x-$\frac{a}{x}$+2a(其中a∈R).
(Ⅰ) 求函数f(x)的单调区间;
(Ⅱ) 当a>0时,是否存在实数a,使得当x∈[1,e]时,不等式f(x)>0恒成立,如果存在,求a的取值范围,如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=(  )
A.3$\sqrt{3}$B.-3或3C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:an=$\frac{{b}_{1}}{3+1}$+$\frac{{b}_{2}}{{3}^{2}+1}$+$\frac{{b}_{3}}{{3}^{3}+1}$+…+$\frac{{b}_{n}}{{3}^{n}+1}$,求数列{bn}的通项公式;
(3)令cn=$\frac{{a}_{n}{b}_{n}}{4}$(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知矩形的长为10,宽为5(如图所示),在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆为560颗,则可以估计阴影部分的面积为2.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z满足iz=1+2i,则复数z的共轭复数$\overline{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案