精英家教网 > 高中数学 > 题目详情
1.(x2-1)($\frac{1}{x}$-2)5的展开式的常数项为(  )
A.112B.48C.-112D.-48

分析 利用通项公式即可得出.

解答 解:($\frac{1}{x}$-2)5的展开式的通项公式为:Tr+1=${∁}_{5}^{r}$(-2)5-r$(\frac{1}{x})^{r}$=${∁}_{5}^{r}$(-2)5-rx-r
令-r=-2,-r=0,分别解得r=2,r=0.
∴(x2-1)($\frac{1}{x}$-2)5的展开式的常数项=$1×{∁}_{5}^{2}(-2)^{3}$-1×1×(-2)5=-48.
故选:D.

点评 本题考查了二项式定理的应用、方程思想方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在长方体ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,点E在棱AB上移动.
(1)当AE=1时,求证:直线D1E⊥平面A1DC1
(2)在(1)的条件下,求${V_{{C_1}-{A_1}DE}}:{V_{{C_1}-{A_1}{D_1}D}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|y=$\sqrt{x+1}$},B={y=|y=1-ex},则A∩B=(  )
A.[-1,1)B.[-1,1]C.(-1,1)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线l经过点P(1,2),且垂直于直线2x+y-1=0,则直线l的方程是x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标平面内,已知A(0,5),B(-1,3),C(3,t).
(1)若t=1,求证:△ABC为直角三角形;
(2)求实数t的值,使$|{\overrightarrow{AB}+\overrightarrow{AC}}|$最小;
(3)若存在实数λ,使$\overrightarrow{AB}=λ•\overrightarrow{AC}$,求实数λ、t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-2x-3>0,x∈Z},集合B={x|x>0},则集合(∁ZA)∩B的子集个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,且右焦点到一条渐近线的距离为$\sqrt{3}$,双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{3}=1$C.${y^2}-\frac{x^2}{3}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为了得到函数$y=2sin({2x-\frac{π}{3}})$的图象,只需把函数$f(x)=2\sqrt{3}sin({x+\frac{π}{4}})cos({x+\frac{π}{4}})-sin({2x+3π})$的图象向右平移$\frac{π}{3}$个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=(  )
A.3$\sqrt{3}$B.-3或3C.3D.-3

查看答案和解析>>

同步练习册答案