精英家教网 > 高中数学 > 题目详情
5.在如图所示的边长为2的正方形中随机掷一粒豆子,豆子落在正方形内切圆的上半圆(图中阴影部分)中的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 本题是几何概型的考查,只要求出内切圆的面积,利用面积比求概率.

解答 解:由题意,豆子落在正方形内切圆的上半圆中的概率是内切圆的面积与正方形面积的比,由此内切圆一半的面积是$\frac{π}{2}$,正方形一半的面积为4,豆子落在正方形内切圆的上半圆中的概率为$\frac{\frac{π}{2}}{4}=\frac{π}{8}$;
故选:B.

点评 本题考查了几何概型概率的求法;关键是明确几何测度为面积,概率为面积比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求函数y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+1}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若函数f(x)=sin3xcosx+cos3xsinx+$\sqrt{3}$sin2x.
(1)求函数f(x)的对称轴方程;
(2)求单调减区间;
(3)当x∈[0,$\frac{π}{2}$]时 求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=3ax+2b,x∈[-1,1]单调递增,且有最大值2,函数f(x)=ax3+bx2+cx+d,x∈[-1,1]的任一切线都不会与双曲线y2-x2=1的两支相交,且f(x)的最大值为$\frac{\sqrt{2}}{3}$
(1)求证:-2≤g(x)≤2;
(2)求f(x)的解析式;
(3)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{4co{s}^{4}x-2cos2x-1}{tan(\frac{π}{4}+x)co{s}^{2}(\frac{π}{4}+x)}$.
(1)求f(-$\frac{5π}{12}$)的值;
(2)求g(x)=$\frac{1}{2}$f(x)+sin2x的对称轴,对称中心和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=log${\;}_{\frac{1}{3}}$(x2-ax+1)的值域为R,则实数a的取值范围是(  )
A.a<-2或a>2B.a≤-2或a≥2C.-2<a<2D.-2≤a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设实数集S是满足以下两个条件的集合:①1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(1)求证:若a∈S,则1-$\frac{1}{a}$∈S;
(2)求证:集合S中至少有三个不同的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=3,cosC=-$\frac{1}{4}$,则c等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数.

查看答案和解析>>

同步练习册答案