精英家教网 > 高中数学 > 题目详情
12.已知在数列{an}中,a1=-1,an+1=2an-3,则a5等于-61.

分析 利用数列的递推关系式逐步求解即可.

解答 解:在数列{an}中,a1=-1,an+1=2an-3,
则a2=2a1-3=-5,
a3=2a2-3=-13,
a4=2a3-3=-29,
a5=2a4-3=-61.
故答案为:-61.

点评 本题考查数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{c}$都是非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)”的(  )
A.充分但非必要条件B.必要但非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=2$\sqrt{x}$+1的值域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知cos(α+$\frac{π}{4}}$)=$\frac{3}{5}$,$\frac{π}{2}$≤α<$\frac{3π}{2}$,则sin2α=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列程序框图对应的函数是(  )
A.f(x)=xB.f(x)=-xC.f(x)=|x|D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.探究函数f(x)=2x+$\frac{8}{x}$,x∈(0,+∞)最小值,并确定取得最小值时x的值.列表如下:
x0.511.51.71.922.12.22.33457
y17108.348.18.0188.018.048.088.61011.615.14
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)上递减;函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数f(x)=2x+$\frac{8}{x}$(x>0)在区间(0,2)递减.
(3)思考:函数f(x)=2x+$\frac{8}{x}$(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$,表示的平面区域是一个三角形区域,则a的取值范围是(  )
A.a≥$\frac{4}{3}$B.0<a≤1C.1≤a≤$\frac{4}{3}$D.0<a≤1或a≥$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于下列命题:
①若函数f(3x+1)的定义域为(-∞,0),则函数f(x)的定义域为(-∞,1);
②若函数f(x)的定义域为(-∞,1),函数f($\frac{1}{x}$)的定义域为(-∞,1);
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2};
④若函数y=$\frac{1}{x}$的定义域是{x|x>2},则它的值域是{y|y≤$\frac{1}{2}$};
其中不正确的命题的序号是②③④.
( 注:把你认为不正确的命题的序号都填上).

查看答案和解析>>

同步练习册答案