1£®Ä³³§½èæÏ¶ð±¼ÔµĶ«·ç£¬ÍƳöÆ·ÅÆÎª¡°ÓñÍá±µÄвúÆ·£¬Éú²ú¡°ÓñÍᱵĹ̶¨³É±¾Îª20000Ôª£¬Ã¿Éú²úÒ»¼þ¡°ÓñÍá±ÐèÒªÔö¼ÓͶÈë100Ôª£¬¸ù¾Ý³õ²½²âË㣬×ÜÊÕÒæÂú×㺯Êý$R£¨x£©=\left\{\begin{array}{l}400x-\frac{1}{2}{x^2}£¬£¨0¡Üx¡Ü400£©\\ 80000£¬£¨x£¾400£©\end{array}\right.$£¬ÆäÖÐxÊÇ¡°ÓñÍá±µÄÔ²úÁ¿£®
£¨1£©½«ÀûÈóf£¨x£©±íʾΪÔ²úÁ¿xµÄº¯Êý£»
£¨2£©µ±Ô²úÁ¿ÎªºÎֵʱ£¬¸Ã³§Ëù»ñÀûÈó×î´ó£¿×î´óÀûÈóÊǶàÉÙ£¿£¨×ÜÊÕÒæ=×ܳɱ¾+ÀûÈó£©

·ÖÎö £¨1£©ÓÉÌâÒ⣬ÓÉ×ÜÊÕÒæ=×ܳɱ¾+ÀûÈó¿ÉÖª£¬·Ö0¡Üx¡Ü400¼°x£¾400ÇóÀûÈó£¬ÀûÓ÷ֶκ¯Êý±íʾ£»
£¨2£©ÔÚ0¡Üx¡Ü400¼°x£¾400·Ö±ðÇóº¯ÊýµÄ×î´óÖµ»òȡֵ·¶Î§£¬´Ó¶øÈ·¶¨º¯ÊýµÄ×î´óÖµ£®´Ó¶øµÃµ½×î´óÀûÈó£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬
µ±0¡Üx¡Ü400ʱ£¬
f£¨x£©=400x-0.5x2-20000-100x
=300x-0.5x2-20000£»
µ±x£¾400ʱ£¬f£¨x£©=80000-100x-20000
=60000-100x£»
¹Ê$f£¨x£©=\left\{\begin{array}{l}-\frac{1}{2}{x^2}+300x-20000£¬£¨0¡Üx¡Ü400£©\\-100x+60000£¬£¨x£¾400£©\end{array}\right.$
£¨2£©µ±0¡Üx¡Ü400ʱ£¬f£¨x£©=300x-0.5x2-20000£»
µ±x=300ʱ£¬f£¨x£©max=f£¨300£©=25000£¨Ôª£©
µ±x£¾400ʱ£¬f£¨x£©max£¼f£¨400£©=20000£¨Ôª£©
¡ß25000£¾20000£¬¡àµ±x=300ʱ£¬¸Ã³§Ëù»ñÀûÈó×î´ó£¬×î´óÀûÈóΪ25000Ôª£®

µãÆÀ ±¾Ì⿼²éÁ˷ֶκ¯ÊýÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÏÂÁм¯ºÏÖУ¬²»Í¬ÓÚÁíÍâÈý¸ö¼¯ºÏµÄÊÇ¢Û£®
¢Ù{x|x=1}   ¢Ú{y|£¨y-1£©2=0}      ¢Û{x=1}    ¢Ü{1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÓÃÇØ¾ÅÉØËã·¨¼ÆËã¶àÏîʽf£¨x£©=2x4-x3+3x2+7£¬ÔÚÇóx=3ʱ¶ÔÓ¦µÄֵʱ£¬v3µÄֵΪ54£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êý$y=cos£¨{4x+\frac{¦Ð}{3}}£©$µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬$\overrightarrow{BF}=2\overrightarrow{FC}$£¬$\overrightarrow{AM}=\overrightarrow{MF}=\overrightarrow{FN}$£®
£¨1£©ÓÃ$\overrightarrow{AB}$£¬$\overrightarrow{AC}$±íʾ$\overrightarrow{AF}$£»
£¨2£©Èô$\overrightarrow{AB}¡Í\overrightarrow{AC}$£¬$|{\overrightarrow{AB}}|=\sqrt{2}|{\overrightarrow{AC}}|$£¬ÇóÖ¤£º$\overrightarrow{AN}¡Í\overrightarrow{BC}$£»
£¨3£©Èô$\overrightarrow{BM}•\overrightarrow{BC}=|{\overrightarrow{MF}}|=1$£¬Çó$\overrightarrow{BA}•\overrightarrow{BN}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôµãPÔÚÔ²${C_1}£º{£¨x-2£©^2}+{£¨y-2£©^2}=1$ÉÏ£¬µãQÔÚÔ²${C_2}£º{£¨x+2£©^2}+{£¨y+1£©^2}=4$ÉÏ£¬Ôò|PQ|µÄ×îСֵÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýf£¨x£©=-x3+3x+2µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨-¡Þ£¬-1£©C£®£¨-1£¬1£©D£®£¨-2£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®£¨-8£©${\;}^{\frac{1}{3}}$+¦Ð0+lg4+lg25=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪƽÐÐËıßÐΣ¬PA¡Íµ×ÃæABCD£¬ÇÒPA=AB=AC=2£¬$BC=2\sqrt{2}$£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPCD¡ÍÆ½ÃæPAC£»
£¨¢ò£©Èç¹ûMÊÇÀâPDÉϵĵ㣬NÊÇÀâABÉÏÒ»µã£¬AN=2NB£¬ÇÒÈýÀâ×¶N-BMCµÄÌå»ýΪ$\frac{1}{6}$£¬Çó$\frac{PM}{MD}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸