【题目】设抛物线
的焦点为F,准线为
,直线l与C交于A,B两点,线段AB中点M的横坐标为2.
(1)求C的方程;
(2)若l经过F,求l的方程.
【答案】(1)
(2)![]()
【解析】
(1)根据抛物线的准线方程,即可求得抛物线的标准方程.
(2)作
垂直准线交于
,作
垂直准线交于
,交
轴于
,作
垂直准线交于
.当直线斜率不存在时,不合题意,当斜率存在时,设出直线方程,联立抛物线,化简后由韦达定理并结合中点的横坐标,即可确定斜率,进而求得直线方程.
(1)抛物线
的准线为
,
则
,解得
,
所以抛物线
.
(2)作
垂直准线交于
,作
垂直准线交于
,交
轴于
,作
垂直准线交于
,几何关系如下图所示:
![]()
因为线段AB中点M的横坐标为2.
则
,
由梯形中位线可知
由抛物线定义可知![]()
直线
经过F,当斜率不存在时
,不合题意,
所以直线
斜率一定存在,
抛物线
,则焦点
.
设直线
的方程为
,
联立抛物线
,化简可得
,
则
,
解得
,
所以直线
的方程为
.
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆C:
上的一点,椭圆C的离心率与双曲线
的离心率互为倒数,斜率为
直线l交椭圆C于B,D两点,且A、B、D三点互不重合.
![]()
(1)求椭圆C的方程;
(2)若
分别为直线AB,AD的斜率,求证:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在
内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 |
|
|
|
|
|
|
频数 | 1 | 5 | 18 | 19 | 6 | 1 |
图1:乙套设备的样本的频率分布直方图
![]()
(1)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;
(2)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
| 0.15 | 0.10 | 0.050 |
| 2.072 | 2.706 | 3.841 |
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记抛物线
的焦点为
,点
在抛物线上,
,斜率为
的直线
与抛物线
交于
两点.
(1)求
的最小值;
(2)若
,直线
的斜率都存在,且
;探究:直线
是否过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是两条异面直线,直线
与
都垂直,则下列说法正确的是( )
A. 若
平面
,则![]()
B. 若
平面
,则
,![]()
C. 存在平面
,使得
,
,![]()
D. 存在平面
,使得
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
中,已知
,
,
,D是边AC上一点,将
沿BD折起,得到三棱锥
.若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设
,则x的取值范围为()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
和曲线
的普通方程;
(2)已知点
,且直线
和曲线
交于
两点,求
的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com