精英家教网 > 高中数学 > 题目详情
如图,ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:
AB•CD
AD•BC
=
RQ
PQ
考点:与圆有关的比例线段
专题:立体几何
分析:由AP∥DC,可得∠ABD=∠CBP.连接BP.则∠ADB=∠APB,得到△ABD∽△QPB,因此
AD
QP
=
AB
BQ
.由于AP∥CD,可得
CD
BC
=
RQ
BQ
.即可证明.
解答: 证明:∵AP∥DC,∴∠ABD=∠CBP.
如图所示,连接BP.则∠ADB=∠APB,
∴△ABD∽△QPB,
AD
QP
=
AB
BQ

∵AP∥CD,
CD
BC
=
RQ
BQ

AB•CD
BC•BQ
=
AD•RQ
QP•BQ

AB•CD
AD•BC
=
RQ
PQ
点评:本题考查了圆的性质、平行线分线段成比例定理、相似三角形的判定与性质定理,考查了推理能力,考查了辅助线的作法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(x+a)5的展开式中x2的系数为80,则
a
1
xadx的值为(  )
A、1
B、5
C、
8
3
D、
7
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果某公司的资金积累量每年平均比上一年增长16%,那么经过x年可以增长到原来的y倍,则函数y=f(x)的图象大致为图中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1(-2,0),F2(2,0),离心率为
2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设点P(-4,0),是否存在过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落到由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界)?若存在,求出直线l的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+2|+|2x-a|(a∈R).
(Ⅰ)当a=2时,求函数y=f(x)的值域;
(Ⅱ)当a<-4时,存在x≤-2,使得f(x)-x≤4成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若4x-y能被3整除,则4x2+7xy-2y2能被9整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域内的任意x都满足f[f(x)]=x,则称f(x)为“不动点函数”;若存在x0使得f[f(x0)]=x0,则称x0为函数y=f(x)的“不动点”
(Ⅰ)已知一次函数y=kx+b(k>0)是“不动点函数”,求实数k,b的值;
(Ⅱ)求证:二次函数y=ax2+c不可能是“不动点函数”
(Ⅲ)写出正弦函数y=sinx的所有不动点(不必写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,
OA
=(2cos2x,1),
OB
=(a,
3
asin2x+1-a),a为非零常数.设y=
OA
OB

(1)求y关于x的函数解析式f(x)为
 

(2)当x∈[0,
π
2
]时,f(x)的最大值为3,求a的值并指出f(x)的单调增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)比较大小:3.30.7和3.40.8
(2)求值:27 
2
3
-2 log23×log2
1
8
+2log5
6+2
5
+
6-2
5
)-log54.

查看答案和解析>>

同步练习册答案