精英家教网 > 高中数学 > 题目详情
19.利用逻辑运算律化简:
(1)$\overline{\overline{A}B+B}$
(2)$\overline{AB}$+C$\overline{B}$.

分析 根据和事件,积事件,对立事件的定义判断求解,

解答 解:(1)$\overline{\overline{A}B+B}$=($\overline{\overline{A}B}$)$\overline{B}$=($\overline{\overline{A}}$$\overline{B}$)$\overline{B}$=(A+$\overline{B}$)$∩\overline{B}$=A$\overline{B}$$+\overline{B}$;
(2)$\overline{AB}$+C$\overline{B}$=$\overline{A}$$+\overline{B}$+C$\overline{B}$

点评 本题考查逻辑运算律,熟练掌握好事件的运算规律,化简求解,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为(  )
A.[0,$\frac{12}{5}$]B.(0,$\frac{12}{5}$)C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=x3+(a-1)x2-(a+1)x-a.
(1)若函数f(x)在x=1时的切线斜率为-1,求函数f(x)的解析式.
(2)若对任意实数a∈[-1,1],函数f(x)在(-∞,m)和(n,+∞)上都是增函数,求m与n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n和Sn=$\frac{3}{2}$n2+$\frac{5}{2}$n,数列{bn}的通项公式bn=5n+2.
(1)求数列{an}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}{b}_{n}}$,求证:$\sum_{i=1}^{n}$ci<$\frac{2}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的各项均正数,记A(n)是其前n项的积,B(n)是从第二项开始往后n项的积,C(n)是从第三项开始往后n项的积,n=1,2,….若a1=1,a2=2,且对任意n∈N*,三个数A(n),B(n),C(n)组成等比数列,则数列{an}的通项公式为an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.
(Ⅰ)若$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,求b的值;
(Ⅱ)若|AB|=2$\sqrt{3}$,且直线l与两坐标轴围成的三角形的面积为$\frac{2\sqrt{3}}{3}$,求直线l的斜率k的值;
(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-1-lnx
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.分配4名水暖工去3个不同的居民家里检查暖气管道,要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有(  )
A.$A_4^3$种B.A33A31C.C41C31D.C42A33

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数a≥0,b≥0,且ab=0,则称a与b互补,记f(a,b)=$\sqrt{{a}^{2}+{b}^{2}}$-a-b(a≥0,b≥0),那么f(a,b)=0是a与b互补的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案