精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\ ln({x-1}),1<x<2\end{array}$,若存在实数a,当x<2时,f(x)≤ax+b恒成立,则实数b的取值范围是(  )
A.[1,+∞)B.[2,+∞)C.[3,+∞)D.[4,+∞)

分析 画出函数f(x)的图象,由由y=ax+b可得直线在y轴上的截距为b,直线总在曲线上方,即可得到b的范围.

解答 解:画出函数f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\ ln({x-1}),1<x<2\end{array}$的图象,
由y=ax+b可得直线在y轴上的截距为b,
若存在实数a,当x<2时,f(x)≤ax+b恒成立,
则b≥2.
故选:B.

点评 本题考查分段函数的应用,考查数形结合的思想方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在一个口袋中装5个白球和3个黑球,这些球除颜色外完全相同,从中摸出1个球,则摸到黑球的概率是(  )
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\left\{\begin{array}{l}{0,x>0}\\{-1,x=0}\\{2x-3,x<0}\end{array}\right.$,则f[f(0)]=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式组$\left\{\begin{array}{l}x>m\\ x<4\end{array}\right.$的整数解有4个,则m的取值范围是(  )
A.-1≤m<0B.-1<m≤0C.-1≤m≤0D.-1<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:($\frac{1}{3}$)-1+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)的定义域为[a,b],在同一坐标系下,函数y=f(x)的图象与直线x=1的交点个数为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)是定义在R上的奇函数,但当x>0时,f(x)=$\frac{1}{x+1}$-log2(x+1),则满足4f(x+1)>7的实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-1)∪(3,+∞)C.(-4,2)D.(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若命题p:{x|log2(x-1)<0}命题 q:{x|x<3},则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.规定[t]为不超过t的最大整数,例如[12.5]=12,[-3.5]=-4,对任意的实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].
(1)若x=$\frac{7}{16}$,分别求f1(x) 和f2(x);
(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.

查看答案和解析>>

同步练习册答案