【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角
和以
为直径的半圆拼接而成,点
为半圈上一点(异于
,
),点
在线段
上,且满足
.已知
,
,设
.
![]()
(1)为了使工艺礼品达到最佳观赏效果,需满足
,且
达到最大.当
为何值时,工艺礼品达到最佳观赏效果;
(2)为了工艺礼品达到最佳稳定性便于收藏,需满足
,且
达到最大.当
为何值时,
取得最大值,并求该最大值.
科目:高中数学 来源: 题型:
【题目】已知函数为常数
(1)当
在
处取得极值时,若关于x的方程
在
上恰有两个不相等的实数根,求实数b的取值范围.
(2)若对任意的
,总存在
,使不等式
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扎比瓦卡是2018年俄罗斯世界杯足球赛吉祥物,该吉祥物以西伯利亚平原狼为蓝本.扎比瓦卡,俄语意为“进球者”.某厂生产“扎比瓦卡”的固定成本为15000元,每生产一件“扎比瓦卡”需要增加投入20元,根据初步测算,每个销售价格满足函数
,其中x是“扎比瓦卡”的月产量(每月全部售完).
(1)将利润
表示为月产量
的函数;
(2)当月产量为何值时,该厂所获利润最大?最大利润是多少?(总收益=总成本+利润).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第
条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以
元罚款,记
分的行政处罚.如表是本市一主干路段监控设备所抓拍的
个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 |
|
|
|
|
|
违章驾驶员人数 |
|
|
|
|
|
(Ⅰ)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(Ⅱ)预测该路段
月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
中,底面
是边长为
的菱形,侧面
底面
,
,
,
是
中点,点
在侧棱
上.
![]()
(Ⅰ)求证:
;
(Ⅱ)若
是
中点,求二面角
的余弦值;
(Ⅲ)是否存在
,使
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.点(2,0)关于直线y=x+1的对称点为(﹣1,3)
B.过(x1,y1),(x2,y2)两点的直线方程为![]()
C.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y﹣2=0或x﹣y=0
D.直线x﹣y﹣4=0与两坐标轴围成的三角形的面积是8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形
的麦田里成为守望者,如图所示,为了分割麦田,他将
连接,设
中边
所对的角为
,
中边
所对的角为
,经测量已知
,
.
![]()
(1)霍尔顿发现无论
多长,
为一个定值,请你验证霍尔顿的结论,并求出这个定值;
(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记
与
的面积分别为
和
,为了更好地规划麦田,请你帮助霍尔顿求出
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com