精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求面积的最大值.

【答案】(1);(2)3.

【解析】

(1)由的周长为8,可知,结合离心率为,可求出,从而可得到椭圆的标准方程;(2)由题意知直线的斜率不为0,设直线的方程为,将直线方程与椭圆方程联立可得到关于的一元二次方程,由三角形的面积公式可知,结合根与系数关系可得到的表达式,求出最大值即可。

(1)由题意知, ,则,

由椭圆离心率,则,,

则椭圆的方程.

(2)由题意知直线的斜率不为0,

设直线的方程为

所以

,则,所以

上单调递增,则的最小值为4,

所以

时取等号,即当时,的面积最大值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形是矩形,平面 平面,点分别为中点.

1)求证: 平面

2,求平面DEF与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)当时,求曲线在点处的切线方程;

2)讨论函数的单调区间;

3求证若函数处取得极值,则对恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右顶点分别为右焦点为,直线是椭圆在点处的切线.设点是椭圆上异于的动点,直线与直线的交点为,且当, 是等腰三角形.

Ⅰ)求椭圆的离心率;

Ⅱ)设椭圆的长轴长等于,当点运动时,试判断以为直径的圆与直线的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产两种元件,其质量按测试指标划分为:大于或等于为正品,小于为次品.现从一批产品中随机抽取这两种元件各件进行检测,检测结果记录如下:







B






由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.

1)求表格中的值;

2)从被检测的种元件中任取件,求件都为正品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于),点在线段上,且满足.已知,设.

1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.为何值时,工艺礼品达到最佳观赏效果;

2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.为何值时,取得最大值,并求该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一条动直线3(m+1)x+(m-1)y-6m-2=0

1)求证:直线恒过定点,并求出定点P的坐标;

2)若直线与xy轴的正半轴分别交于AB两点,O为坐标原点,是否存在直线满足下列条件:①AOB的周长为12;②△AOB的面积为6,若存在,求出方程;若不存在,请说明理由.

3)若直线与xy轴的正半轴分别交于AB两点,当取最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的部分图象,MN是它与x轴的两个不同交点,DMN之间的最高点且横坐标为,点是线段DM的中点.

1)求函数的解析式及上的单调增区间;

2)若时,函数的最小值为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直棱柱中,

.

(1)证明:直线平面

(2)求平面与平面所成的锐二面角的余弦.

查看答案和解析>>

同步练习册答案