精英家教网 > 高中数学 > 题目详情
某校开设9门课程供学生选修,其中A,B,C3门由于上课时间相同,至多选1门.若学校规定每位学生选修4门,则每位学生不同的选修方案共有(  )
A、15种B、60种
C、150种D、75种
考点:排列、组合的实际应用
专题:概率与统计
分析:由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.
解答: 解:由题意知本题需要分类来解,
第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31•C63=60,
第二类,若从其他六门中选4门有C64=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故选D.
点评:本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l:x-
3
y=0
被圆x2+y2-2x=0截得的弦长为(  )
A、1
B、
6
4
C、
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(3,5,-7)和点B(-2,4,3),点A在x轴上的射影为A′,点B在z轴上的射影为B′,则线段A′B′的长为
 
_.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中是偶函数的是(  )
A、y=x-2
B、y=|3-x|
C、y=x2+2  x∈(-3,3]
D、y=-
3
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3•a7=8,则log2a2+log2a8=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+4)=f(x),当x∈[0,4]时,f(x)=2|x-m|+n,且f(2)=6.
(1)求m,n的值;
(2)当x∈[0,4]时,关于x的方程f(x)-a•2x=0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-2log5x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足(x-2)2+y2=3.求:
(1)
y
x
的最大值和最小值;
(2)y-x的最小值;
(3)(x-4)2+(y-3)2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
BA
=(1,2),
CA
=(4,x),且
BA
CA
的夹角为0°,则
BC
=
 

查看答案和解析>>

同步练习册答案