精英家教网 > 高中数学 > 题目详情
3.在数列{an}中,若a1=3,an=2an+1,求a4的值.

分析 利用数列的递推关系式,逐步求解即可.

解答 解:在数列{an}中,若a1=3,an=2an+1
可得a2=$\frac{3}{2}$,
a3=$\frac{3}{4}$.
a4=$\frac{3}{8}$.
故答案为:$\frac{3}{8}$.

点评 本题考查数列的形式的应用,因为求解的是a4的值,所以利用逐步求解,当然可以利用等比数列求解,但是必须证明数列是等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且a1=3,Sn+1-2Sn=1-n.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=2,a2=4,且an+1=3an-2an-1(n≥2),设bn=log2${\;}^{({a}_{n+1}-{a}_{n)}}$
(1)求证:数列{bn}为等差数列;
(2)求数列{$\frac{1}{{b}_{{\;}_{n}}{b}_{n+1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,A=$\frac{π}{3}$,|$\overrightarrow{AC}$|=m,m∈[1,2],若对于任意实数t恒有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|,则△ABC面积的最大值是(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若(x+$\frac{1}{\sqrt{x}}$)n(n∈N*)展开式中各项系数的和等于64,则展开式中x3的系数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在数列{an}中,an=n(sin$\frac{nπ}{2}$+cos$\frac{nπ}{2}$),前n项和为Sn,则S100=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(拉普拉斯(Laplace)分布)设随机变量X的概率密度为
f(x)=Ae-|x|,-∞<x<+∞
求:
(1)系数A;
(2)随机变量X落在区间(0,1)内的概率;
(3)随机变量X的分布函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列的第1项是7,第9项是1,则它的第5项是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等比数列{an}的前n项和Sn中,$\frac{{S}_{2}}{{S}_{1}}$=$\frac{1}{2}$,则公比q=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案